In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of and is sometimes expressed as , , , or , depending on the notation being used.
However, these symbols are also used for material equivalence, so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related.
In logic, many common logical equivalences exist and are often listed as laws or properties. The following tables illustrate some of these.
The following statements are logically equivalent:
If Lisa is in Denmark, then she is in Europe (a statement of the form ).
If Lisa is not in Europe, then she is not in Denmark (a statement of the form ).
Syntactically, (1) and (2) are derivable from each other via the rules of contraposition and double negation. Semantically, (1) and (2) are true in exactly the same models (interpretations, valuations); namely, those in which either Lisa is in Denmark is false or Lisa is in Europe is true.
(Note that in this example, classical logic is assumed. Some non-classical logics do not deem (1) and (2) to be logically equivalent.)
Logical equivalence is different from material equivalence. Formulas and are logically equivalent if and only if the statement of their material equivalence () is a tautology.
The material equivalence of and (often written as ) is itself another statement in the same object language as and . This statement expresses the idea "' if and only if '". In particular, the truth value of can change from one model to another.
On the other hand, the claim that two formulas are logically equivalent is a statement in metalanguage, which expresses a relationship between two statements and . The statements are logically equivalent if, in every model, they have the same truth value.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientaiment, is the logical connective used to conjoin two statements and to form the statement " if and only if " (often abbreviated as " iff "), where is known as the antecedent, and the consequent. Nowadays, notations to represent equivalence include . is logically equivalent to both and , and the XNOR (exclusive nor) boolean operator, which means "both or neither".
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, "3 − 5 ≠ 5 − 3"); such operations are not commutative, and so are referred to as noncommutative operations.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
We propose a new approach for normalization and simplification of logical formulas. Our approach is based on algorithms for lattice-like structures. Specifically, we present two efficient algorithms for computing a normal form and deciding the word problem ...
2022
The differential model MIAGE (see "Mechanistic Interpretation of Alpine Glacierized Environments: Part 1. Model formulation and related dynamical properties" by Perona and Burlando, this issue) is analyzed in this work with the purpose of: (i) showing the ...
The Algebra of Connectors AC(P) is used to model structured interactions in the BIP component framework. Its terms are connectors, relations describing synchronization constraints between the ports of component-based systems. Connectors are structured comb ...