In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial is not homogeneous, because the sum of exponents does not match from term to term. The function defined by a homogeneous polynomial is always a homogeneous function.
An algebraic form, or simply form, is a function defined by a homogeneous polynomial. A binary form is a form in two variables. A form is also a function defined on a vector space, which may be expressed as a homogeneous function of the coordinates over any basis.
A polynomial of degree 0 is always homogeneous; it is simply an element of the field or ring of the coefficients, usually called a constant or a scalar. A form of degree 1 is a linear form. A form of degree 2 is a quadratic form. In geometry, the Euclidean distance is the square root of a quadratic form.
Homogeneous polynomials are ubiquitous in mathematics and physics. They play a fundamental role in algebraic geometry, as a projective algebraic variety is defined as the set of the common zeros of a set of homogeneous polynomials.
A homogeneous polynomial defines a homogeneous function. This means that, if a multivariate polynomial P is homogeneous of degree d, then
for every in any field containing the coefficients of P. Conversely, if the above relation is true for infinitely many then the polynomial is homogeneous of degree d.
In particular, if P is homogeneous then
for every This property is fundamental in the definition of a projective variety.
Any nonzero polynomial may be decomposed, in a unique way, as a sum of homogeneous polynomials of different degrees, which are called the homogeneous components of the polynomial.
Given a polynomial ring over a field (or, more generally, a ring) K, the homogeneous polynomials of degree d form a vector space (or a module), commonly denoted The above unique decomposition means that is the direct sum of the (sum over all nonnegative integers).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: A monomial, also called power product, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, is a monomial. The constant is a monomial, being equal to the empty product and to for any variable . If only a single variable is considered, this means that a monomial is either or a power of , with a positive integer.
In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map that is separately -linear in each of its arguments. More generally, one can define multilinear forms on a module over a commutative ring. The rest of this article, however, will only consider multilinear forms on finite-dimensional vector spaces. A multilinear -form on over is called a (covariant) -tensor, and the vector space of such forms is usually denoted or .
Let T be a measure-preserving Zℓ-action on the probability space (X,B,μ), let q1,…,qm:R→Rℓ be vector polynomials, and let f0,…,fm∈L∞(X). For any ϵ>0 and multicorrelation sequences of the form α(n)=∫Xf0⋅T⌊q1(n)⌋f1⋯T⌊qm(n)⌋fmdμ we show that there exis ...
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
The diffusion strategy for distributed learning from streaming data employs local stochastic gradient updates along with exchange of iterates over neighborhoods. In Part I [3] of this work we established that agents cluster around a network centroid and pr ...