Résumé
In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map that is separately -linear in each of its arguments. More generally, one can define multilinear forms on a module over a commutative ring. The rest of this article, however, will only consider multilinear forms on finite-dimensional vector spaces. A multilinear -form on over is called a (covariant) -tensor, and the vector space of such forms is usually denoted or . Given a -tensor and an -tensor , a product , known as the tensor product, can be defined by the property for all . The tensor product of multilinear forms is not commutative; however it is bilinear and associative: and If forms a basis for an -dimensional vector space and is the corresponding dual basis for the dual space , then the products , with form a basis for . Consequently, has dimensionality . Bilinear form If , is referred to as a bilinear form. A familiar and important example of a (symmetric) bilinear form is the standard inner product (dot product) of vectors. Alternating multilinear map An important class of multilinear forms are the alternating multilinear forms, which have the additional property that where is a permutation and denotes its sign (+1 if even, –1 if odd). As a consequence, alternating multilinear forms are antisymmetric with respect to swapping of any two arguments (i.e., and ): With the additional hypothesis that the characteristic of the field is not 2, setting implies as a corollary that ; that is, the form has a value of 0 whenever two of its arguments are equal. Note, however, that some authors use this last condition as the defining property of alternating forms. This definition implies the property given at the beginning of the section, but as noted above, the converse implication holds only when . An alternating multilinear -form on over is called a multicovector of degree or -covector, and the vector space of such alternating forms, a subspace of , is generally denoted , or, using the notation for the isomorphic kth exterior power of (the dual space of ), .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (16)
Polynôme homogène
En mathématiques, un polynôme homogène, ou forme algébrique, est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total. Par exemple le polynôme x + 2xy + 9xy est homogène de degré 5 car la somme des exposants est 5 pour chacun des monômes ; les polynômes homogènes de degré 2 sont les formes quadratiques. Les polynômes homogènes sont omniprésents en mathématiques et en physique théorique. Soit K un corps commutatif. Un polynôme homogène de degré d en n variables est un polynôme dans K[X, .
Forme multilinéaire
En mathématiques, une forme multilinéaire est une application d'un produit d'espaces vectoriels dans leur corps de coefficients, qui est linéaire en chacune de ses variables. C'est donc un cas particulier d'application multilinéaire. Soient un entier k > 0 et des espaces vectoriels sur un même corps K. Une application est dite multilinéaire (ou plus précisément : k-linéaire) si elle est linéaire en chaque variable, c'est-à-dire si, pour des vecteurs et des scalaires a et b, Un exemple classique de forme multilinéaire est le déterminant.
Alternating multilinear map
In mathematics, more specifically in multilinear algebra, an alternating multilinear map is a multilinear map with all arguments belonging to the same vector space (for example, a bilinear form or a multilinear form) that is zero whenever any pair of arguments is equal. More generally, the vector space may be a module over a commutative ring. The notion of alternatization (or alternatisation) is used to derive an alternating multilinear map from any multilinear map with all arguments belonging to the same space.
Afficher plus
Cours associés (20)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-115(a): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
Afficher plus