Stochastic control or stochastic optimal control is a sub field of control theory that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a Bayesian probability-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite the presence of this noise. The context may be either discrete time or continuous time.
An extremely well-studied formulation in stochastic control is that of linear quadratic Gaussian control. Here the model is linear, the objective function is the expected value of a quadratic form, and the disturbances are purely additive. A basic result for discrete-time centralized systems with only additive uncertainty is the certainty equivalence property: that the optimal control solution in this case is the same as would be obtained in the absence of the additive disturbances. This property is applicable to all centralized systems with linear equations of evolution, quadratic cost function, and noise entering the model only additively; the quadratic assumption allows for the optimal control laws, which follow the certainty-equivalence property, to be linear functions of the observations of the controllers.
Any deviation from the above assumptions—a nonlinear state equation, a non-quadratic objective function, noise in the multiplicative parameters of the model, or decentralization of control—causes the certainty equivalence property not to hold. For example, its failure to hold for decentralized control was demonstrated in Witsenhausen's counterexample.
In a discrete-time context, the decision-maker observes the state variable, possibly with observational noise, in each time period.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be given to discrete-
This doctoral course provides an introduction to optimal control covering fundamental theory, numerical implementation and problem formulation for applications.
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Control theory is a field of control engineering and applied mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any delay, overshoot, or steady-state error and ensuring a level of control stability; often with the aim to achieve a degree of optimality. To do this, a controller with the requisite corrective behavior is required.
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Macroscopic fundamental diagrams (MFDs) have been widely adopted to model the traffic flow of large-scale urban networks. Coupling perimeter control and regional route guidance (PCRG) is a promising strategy to decrease congestion heterogeneity and reduce ...
Informs2024
,
In this paper, the challenge of asymptotically rejecting sinusoidal disturbances with unknown time-varying frequency and bounded rate is explored. A novel data-driven approach for designing linear parameter-varying (LPV) con- troller is introduced, leverag ...
A novel approach for linear parameter-varying (LPV) controller synthesis for adaptive rejection of time-varying sinusoidal disturbances is proposed. Only the frequency response data of a linear time-invariant (LTI) multiple-input multiple-output (MIMO) sys ...