In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension.
Class field theory provides detailed information about the abelian extensions of number fields, function fields of algebraic curves over finite fields, and local fields.
There are two slightly different definitions of the term cyclotomic extension. It can mean either an extension formed by adjoining roots of unity to a field, or a subextension of such an extension. The cyclotomic fields are examples. A cyclotomic extension, under either definition, is always abelian.
If a field K contains a primitive n-th root of unity and the n-th root of an element of K is adjoined, the resulting Kummer extension is an abelian extension (if K has characteristic p we should say that p doesn't divide n, since otherwise this can fail even to be a separable extension). In general, however, the Galois groups of n-th roots of elements operate both on the n-th roots and on the roots of unity, giving a non-abelian Galois group as semi-direct product. The Kummer theory gives a complete description of the abelian extension case, and the Kronecker–Weber theorem tells us that if K is the field of rational numbers, an extension is abelian if and only if it is a subfield of a field obtained by adjoining a root of unity.
There is an important analogy with the fundamental group in topology, which classifies all covering spaces of a space: abelian covers are classified by its abelianisation which relates directly to the first homology group.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
The seminar aims at discussing recent research papers in the field of deep learning,
implementing the transferability/adaptability of the proposed approaches to applications in the field of research
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning.
In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is credited as one of pioneers of the notion of a class field. However, this notion was already familiar to Kronecker and it was actually Weber who coined the term before Hilbert's fundamental papers came out.
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
Explores the classification of extensions in group theory, emphasizing split extensions and semi-direct products.
Explores the extension of the weak law of large numbers using St. Petersburg's paradox as an example.
Explores cohomology and the cross product, demonstrating its application in group actions like conjugation.
Let k be a field, and let L be an etale k-algebra of finite rank. If a is an element of k(x), let X-a be the affine variety defined by N-L/k(x) = a. Assuming that L has at least one factor that is a cyclic field extension of k, we give a combinatorial desc ...
We discuss two extensions to a recently introduced theory of arrays, which are based on considerations coming from the model theory of power structures. First, we discuss how the ordering relation on the index set can be expressed succinctly by referring t ...
Upper-limb occupational exoskeletons to support the workers' upper arms are typically designed to provide antigravitational support. Although typical work activities require workers to perform static and dynamic actions, the majority of the studies in lite ...