Lipid-lowering agents, also sometimes referred to as hypolipidemic agents, cholesterol-lowering drugs, or antihyperlipidemic agents are a diverse group of pharmaceuticals that are used to lower the level of lipids and lipoproteins such as cholesterol, in the blood (hyperlipidemia). The American Heart Association recommends the descriptor 'lipid lowering agent' be used for this class of drugs rather than the term 'hypolipidemic'.
The several classes of lipid lowering drugs may differ in both their impact on the cholesterol profile and adverse effects. For example, some may lower low density lipoprotein (LDL) levels more so than others, while others may preferentially increase high density lipoprotein (HDL). Clinically, the choice of an agent depends on the patient's cholesterol profile, cardiovascular risk, and the liver and kidney functions of the patient, evaluated against the balancing of risks and benefits of the medications. In the United States, this is guided by the evidence-based guideline most recently updated in 2018 by the American College of Cardiology & American Heart Association.
Statins (HMG-CoA reductase inhibitors) are particularly well suited for lowering LDL, the cholesterol with the strongest links to vascular diseases. In studies using standard doses, statins have been found to lower LDL-C by 18% to 55%, depending on the specific statin being used. A risk exists of muscle damage (myopathy and rhabdomyolysis) with statins. Hypercholesterolemia is not a risk factor for mortality in persons older than 70 years and risks from statin drugs are more increased after age 85.
Fibrates are indicated for hypertriglyceridemia. Fibrates typically lower triglycerides by 20% to 50%. Level of the good cholesterol HDL is also increased. Fibrates may decrease LDL, though generally to a lesser degree than statins. Similar to statins, the risk of muscle damage exists.
Niacin, like fibrates, is also well suited for lowering triglycerides by 20–50%. It may also lower LDL by 5–25% and increase HDL by 15–35%.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Hypercholesterolemia, also called high cholesterol, is the presence of high levels of cholesterol in the blood. It is a form of hyperlipidemia (high levels of lipids in the blood), hyperlipoproteinemia (high levels of lipoproteins in the blood), and dyslipidemia (any abnormalities of lipid and lipoprotein levels in the blood). Elevated levels of non-HDL cholesterol and LDL in the blood may be a consequence of diet, obesity, inherited (genetic) diseases (such as LDL receptor mutations in familial hypercholesterolemia), or the presence of other diseases such as type 2 diabetes and an underactive thyroid.
Hyperlipidemia is abnormally elevated levels of any or all lipids (fats, cholesterol, or triglycerides) or lipoproteins in the blood. The term hyperlipidemia refers to the laboratory finding itself and is also used as an umbrella term covering any of various acquired or genetic disorders that result in that finding. Hyperlipidemia represents a subset of dyslipidemia and a superset of hypercholesterolemia. Hyperlipidemia is usually chronic and requires ongoing medication to control blood lipid levels.
In pharmacology, the fibrates are a class of amphipathic carboxylic acids and esters. They are derivatives of fibric acid (phenoxyisobutyric acid). They are used for a range of metabolic disorders, mainly hypercholesterolemia (high cholesterol), and are therefore hypolipidemic agents. Fibrates improve atherogenic dyslipidemia characterized by high triglyceride and/or low HDL-C levels and elevated concentrations of small dense LDL particles, with or without high LDL-C levels.
The aim of this course is two-fold:
to describe the molecular properties of some important drug targets
to illustrate some applications of drugs active at the nervous and cardiovascular systems.
Delves into the complexity of biological membranes, emphasizing their dynamic nature, diverse functions, and significance for brain function and connectivity.
Explores the regulation of lipid absorption and metabolism in the digestive system, covering bile salts, chylomicrons, water absorption, and detoxification functions of the liver.
STARD4 regulates cholesterol homeostasis by transferring cholesterol between the plasma membrane and endoplasmic reticulum. The STARD4 structure features a helix-grip fold surrounding a large hydrophobic cavity holding the sterol. Its access is controlled ...
The Krüppel-associated box zinc finger protein (KRAB-ZFP) family diversified in mammals. The majority of human KRAB-ZFPs bind transposable elements (TEs), however, since most TEs are inactive in humans it is unclear whether KRAB-ZFPs emerged to suppress TE ...
Dysregulations in cholesterol metabolism are associated with neurodegenerative and vascular pathologies, and dementia. Diet-derived plant sterols (phytosterols) have cholesterol-lowering, anti-inflammatory, and antioxidant properties and may interfere with ...