Organopalladium chemistry is a branch of organometallic chemistry that deals with organic palladium compounds and their reactions. Palladium is often used as a catalyst in the reduction of alkenes and alkynes with hydrogen. This process involves the formation of a palladium-carbon covalent bond. Palladium is also prominent in carbon-carbon coupling reactions, as demonstrated in tandem reactions.
1873 - A. N. Zaitsev reports reduction of benzophenone over palladium with hydrogen.
1894 - Phillips reports that palladium(II) chloride reduces to palladium metal by contact with ethylene.
1907 - Autoclave technology introduced by Vladimir Ipatieff makes it possible to carry out high pressure hydrogenation.
1956 - In the Wacker process ethylene and oxygen react to acetaldehyde with catalyst PdCl2/CuCl2
1957 - Tetrakis(triphenylphosphine)palladium(0) is reported by Malatesta and Angoletta.
1972 - The Heck reaction is a coupling reaction of a halogenide with an olefin. Pd(0) intermediates are implicated.
1973 - The Trost asymmetric allylic alkylation is a nucleophilic substitution.
1975 - The Sonogashira coupling is a coupling reaction of terminal alkynes with aryl or vinyl halides.
1994 - The Pd-catalyzed Buchwald-Hartwig amination for C-N bond-forming reactions.
Unlike Ni(II), but similar to Pt(II), Pd(II) halides form a variety of alkene complexes. The premier example is dichloro(1,5‐cyclooctadiene)palladium. In this complex, the diene is easily displaced, which makes it a favored precursor to catalysts. In the industrially important Wacker process, ethylene is converted to acetaldehyde via nucleophilic attack of hydroxide on a Pd(II)-ethylene intermediate followed by formation of a vinyl alcohol complex. Fullerene ligands also bind with palladium(II).
Palladium(II) acetate and related compounds are common reagents because the carboxylates are good leaving groups with basic properties. For example palladium trifluoroacetate has been demonstrated to be effective in aromatic decarboxylation:
The iconic complex in this series is allylpalladium chloride dimer (APC).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Tetrakis(triphenylphosphine)palladium(0) (sometimes called quatrotriphenylphosphine palladium) is the chemical compound [Pd(P(C6H5)3)4], often abbreviated Pd(PPh3)4, or rarely PdP4. It is a bright yellow crystalline solid that becomes brown upon decomposition in air. The four phosphorus atoms are at the corners of a tetrahedron surrounding the palladium(0) center. This structure is typical for four-coordinate 18 e− complexes. The corresponding complexes Ni(PPh3)4 and Pt(PPh3)4 are also well known.
In organic chemistry, a coupling reaction is a type of reaction in which two reactant molecules are bonded together. Such reactions often require the aid of a metal catalyst. In one important reaction type, a main group organometallic compound of the type R-M (where R = organic group, M = main group centre metal atom) reacts with an organic halide of the type R'-X with formation of a new carbon-carbon bond in the product R-R'. The most common type of coupling reaction is the cross coupling reaction. Richard F.
The Suzuki reaction is an organic reaction, classified as a cross-coupling reaction, where the coupling partners are a boronic acid and an organohalide and the catalyst is a palladium(0) complex. It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of palladium-catalyzed cross-couplings in organic synthesis. This reaction is also known as the Suzuki–Miyaura reaction or simply as the Suzuki coupling.
This course on homogeneous catalysis provide a detailed understanding of how these catalysts work at a mechanistic level and give examples of catalyst design for important reactions (hydrogenation, ol
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
We report in this paper a Pd(II)-catalyzed migratory gem-fluorolactonization of ene-carboxylic acids. Reaction of 4-methylenealkanoic acid derivatives with Selectfluor in the presence of Pd(OAc)2 (1.0 mol %) at room temperature affords fluorolactones in go ...
The combination of palladium salts and bipyridyl ligands can lead to the formation of a large variety of coordination complexes, with different shapes and sizes, displaying a very versatile host-guest chemistry. Increasing their structural complexity remai ...
Herein we report a mild synthesis of propargyl silanes from terminal alkynes. We exploit a bromonaphthyl-substituted silane as a silylmethyl electrophile surrogate, which participates in a Sonogashira reaction after an aryl-to-alkyl Pd-migration. Twenty-se ...