In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star".
Stellation is the reciprocal or dual process to faceting.
In 1619 Kepler defined stellation for polygons and polyhedra as the process of extending edges or faces until they meet to form a new polygon or polyhedron.
He stellated the regular dodecahedron to obtain two regular star polyhedra, the small stellated dodecahedron and great stellated dodecahedron. He also stellated the regular octahedron to obtain the stella octangula, a regular compound of two tetrahedra.
Stellating a regular polygon symmetrically creates a regular star polygon or polygonal compound. These polygons are characterised by the number of times m that the polygonal boundary winds around the centre of the figure. Like all regular polygons, their vertices lie on a circle. m also corresponds to the number of vertices around the circle to get from one end of a given edge to the other, starting at 1.
A regular star polygon is represented by its Schläfli symbol {n/m}, where n is the number of vertices, m is the step used in sequencing the edges around it, and m and n are coprime (have no common factor). The case m = 1 gives the convex polygon {n}. m also must be less than half of n; otherwise the lines will either be parallel or diverge, preventing the figure from ever closing.
If n and m do have a common factor, then the figure is a regular compound. For example {6/2} is the regular compound of two triangles {3} or hexagram, while {10/4} is a compound of two pentagrams {5/2}.
Some authors use the Schläfli symbol for such regular compounds.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a straight line), if the edge length is fixed. These properties apply to all regular polygons, whether convex or star.
In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations on regular simple and star polygons. Branko Grünbaum identified two primary definitions used by Johannes Kepler, one being the regular star polygons with intersecting edges that don't generate new vertices, and the second being simple isotoxal concave polygons.
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
We develop an analytical model to predict equilibrium shapes of two-component heterogeneous vesicles or capsules. Using a free energy functional including the bending energies of the two components and line tension contributions, the model describes shape ...
2015
The geometric relationships between a structural configuration and its internal force distribution have not received much attention for nearly hundred years. Directly stemming from the most fundamental principles of statics, the underlying theories were br ...
A particle-based numerical manifold method (PNMM) is developed to investigate rock fracturing behavior under dynamic loading. The basic idea of PNMM is to represent the microstructure of rock with a group of particles and to simulate the macroscopic behavi ...