Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.
Polygone régulier étoiléEn géométrie, un polygone régulier étoilé (à ne pas confondre avec une partie étoilée) est un polygone régulier non convexe. Les polygones étoilés non réguliers ne sont pas formellement définis. Branko Grünbaum identifie deux notions primaires utilisées par Kepler, l'une étant le polygone régulier étoilé avec des arêtes sécantes qui ne génèrent pas de nouveaux sommets, et l'autre étant de simples polygones concaves.
Regular 4-polytopeIn mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
IcosaèdreEn géométrie, un icosaèdre est un solide de dimension 3, de la famille des polyèdres, contenant exactement vingt faces. Le préfixe icosa-, d'origine grecque, signifie « vingt ». Il existe de nombreux polyèdres à vingt faces tels l'icosaèdre régulier convexe (appelé plus simplement icosaèdre si le contexte fait référence aux solides de Platon), l'icosaèdre rhombique, le pseudo-icosaèdre, le grand icosaèdre ou plusieurs solides de Johnson.
Composé polyédriqueUn composé polyédrique est un polyèdre qui est lui-même composé de plusieurs autres polyèdres partageant un centre commun, l'analogue tridimensionnel des tels que l'hexagramme. Les sommets voisins d'un composé peuvent être connectés pour former un polyèdre convexe appelé l'enveloppe convexe. Le composé est un facettage de l'enveloppe convexe. Un autre polyèdre convexe est formé par le petit espace central commun à tous les membres du composé. Ce polyèdre peut être considéré comme le noyau pour un ensemble de stellations incluant ce composé.
Petit dodécaèdre étoiléEn géométrie, le petit dodécaèdre étoilé est un solide de Kepler-Poinsot. C'est un des quatre polyèdres réguliers non convexes. Il est composé de 12 faces pentagrammiques, avec cinq pentagrammes se rencontrant à chaque sommet. Les 12 sommets coïncident avec ceux d'un icosaèdre. Les 30 arêtes sont obtenues en reliant chacun des 12 sommets aux 5 sommets les plus éloignés de lui, autres que le sommet diamétralement opposé. Elles sont partagées par le grand icosaèdre.
Symbole de SchläfliEn mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les pavages. Cette notation donne un résumé de certaines propriétés importantes d'un polytope régulier particulier. Le symbole de Schläfli fut nommé ainsi en l'honneur du mathématicien du Ludwig Schläfli qui fit d'importantes contributions en géométrie et dans d'autres domaines. Le symbole de Schläfli pour un polygone régulier convexe à n côtés est {n}.
Dodécaèdre rhombiqueEn géométrie, le dodécaèdre rhombique (aussi appelé granatoèdre) est un polyèdre convexe à 12 faces rhombiques identiques. Solide de Catalan, zonoèdre, il est le dual du cuboctaèdre. Pour le différencier du dodécaèdre de Bilinski, autre dodécaèdre rhombique à 12 faces identiques, on précise parfois dodécaèdre rhombique de première espèce. La grande diagonale de chaque face vaut exactement √2 fois la longueur de la petite diagonale, ainsi, les angles aigus de chaque face mesurent 2 tan(1/√2), ou approximativement 70,53°.
HécatonicosachoreIn geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid. The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices.
Polyèdre étoiléEn géométrie, le terme polyèdre étoilé ne semble pas avoir été défini proprement, même si l'objet est pensé dans le sens commun. On peut dire qu'un polyèdre étoilé est un polyèdre qui possède une certaine qualité répétitive de non-convexité lui donnant l'aspect d'une étoile. Il existe deux espèces générales de polyèdres étoilés : Les polyèdres qui s'auto-intersectent d'une manière répétitive. Les polyèdres concaves d'une sorte particulière qui alternent les parties concaves et convexes ou les sommets de selle d'une manière répétitive.