Summary
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of Arithmetica. Fermat added that he had a proof that was too large to fit in the margin. Although other statements claimed by Fermat without proof were subsequently proven by others and credited as theorems of Fermat (for example, Fermat's theorem on sums of two squares), Fermat's Last Theorem resisted proof, leading to doubt that Fermat ever had a correct proof. Consequently the proposition became known as a conjecture rather than a theorem. After 358 years of effort by mathematicians, the first successful proof was released in 1994 by Andrew Wiles and formally published in 1995. It was described as a "stunning advance" in the citation for Wiles's Abel Prize award in 2016. It also proved much of the Taniyama–Shimura conjecture, subsequently known as the modularity theorem, and opened up entire new approaches to numerous other problems and mathematically powerful modularity lifting techniques. The unsolved problem stimulated the development of algebraic number theory in the 19th and 20th centuries. It is among the most notable theorems in the history of mathematics and prior to its proof was in the Guinness Book of World Records as the "most difficult mathematical problem", in part because the theorem has the largest number of unsuccessful proofs. The Pythagorean equation, x2 + y2 = z2, has an infinite number of positive integer solutions for x, y, and z; these solutions are known as Pythagorean triples (with the simplest example 3,4,5). Around 1637, Fermat wrote in the margin of a book that the more general equation an + bn = cn had no solutions in positive integers if n is an integer greater than 2.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.