In mathematics, an ordinary differential equation is called a Bernoulli differential equation if it is of the form
where is a real number. Some authors allow any real , whereas others require that not be 0 or 1. The equation was first discussed in a work of 1695 by Jacob Bernoulli, after whom it is named. The earliest solution, however, was offered by Gottfried Leibniz, who published his result in the same year and whose method is the one still used today.
Bernoulli equations are special because they are nonlinear differential equations with known exact solutions. A notable special case of the Bernoulli equation is the logistic differential equation.
When , the differential equation is linear. When , it is separable. In these cases, standard techniques for solving equations of those forms can be applied. For and , the substitution reduces any Bernoulli equation to a linear differential equation
For example, in the case , making the substitution in the differential equation produces the equation , which is a linear differential equation.
Let and
be a solution of the linear differential equation
Then we have that is a solution of
And for every such differential equation, for all we have as solution for .
Consider the Bernoulli equation
(in this case, more specifically a Riccati equation).
The constant function is a solution.
Division by yields
Changing variables gives the equations
which can be solved using the integrating factor
Multiplying by ,
The left side can be represented as the derivative of by reversing the product rule.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est une première introduction à la mécanique des fluides. On aborde tout d'abord les propriétés physiques des fluides et quelques principes fondamentaux de la physique, dont ceux de conservat
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equations which may be with respect to one independent variable. A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a_0(x), .
In this work, we analyze space-time reduced basis methods for the efficient numerical simulation of haemodynamics in arteries. The classical formulation of the reduced basis (RB) method features dimensionality reduction in space, while finite difference sc ...
We introduce the "continuized" Nesterov acceleration, a close variant of Nesterov acceleration whose variables are indexed by a continuous time parameter. The two variables continuously mix following a linear ordinary differential equation and take gradien ...
2021
The isentropic vortex problem is frequently solved to test the accuracy of numerical methods and verify corresponding code. Unfortunately, its existing solution was derived in the relativistic magnetohydrodynamics by numerically solving an ordinary differe ...