Geographic information science (GIScience, GISc) or geoinformation science is a scientific discipline at the crossroads of computational science, social science, and natural science that studies geographic information, including how it represents phenomena in the real world, how it represents the way humans understand the world, and how it can be captured, organized, and analyzed. It is a sub-field of geography, specifically part of technical geography. It has applications to both physical geography and human geography, although its techniques can be applied to many other fields of study as well as many different industries.
As a field of study or profession, it can be contrasted with geographic information systems (GIS), which are the actual repositories of geospatial data, the software tools for carrying out relevant tasks, and the profession of GIS users. That said, one of the major goals of GIScience is to find practical ways to improve GIS data, software, and professional practice; it is more focused on how gis is applied in real life as opposed to being a geographic information system tool in and of it self. The field is also sometimes called geographical information science.
British geographer Michael Goodchild defined this area in the 1990s and summarized its core interests, including spatial analysis, visualization, and the representation of uncertainty. GIScience is conceptually related to geomatics, information science, computer science, and data science, but it claims the status of an independent scientific discipline. Overlapping disciplines are: geocomputation, geoinformatics, geomatics and geovisualization. Other related terms are geographic data science (after data science)
and geographic information science and technology (GISci&T), with job titles geospatial information scientists and technologists.
Since its inception in the 1990s, the boundaries between GIScience and cognate disciplines are contested, and different communities might disagree on what GIScience is and what it studies.