Related concepts (18)
Geocomputation
Geocomputation (sometimes GeoComputation) is a field of study at the intersection of geography and computation. Openshaw, S., and R. J. Abrahart. (1996). “Geocomputation.” In Proceedings of the 1st International Conference on GeoComputation, 665–6, edited by R. J. Abrahart. Leeds, U.K.: University of Leeds Longley, P. A., S. M. Brooks, R. McDonnell, and W. D. Macmillan. (1998). Geocomputation: A Primer. Chichester, U.K.: John Wiley & Sons Gahegan, M. (1999). “Guest Editorial: What is Geocomputation?” Transactions in GIS 3(3), 203–6.
Geography
Geography (from Greek: γεωγραφία, geographia. Combination of Greek words 'Geo' (The Earth) and 'Graphien' (to describe), literally "earth description") is a field of science devoted to the study of the lands, features, inhabitants, and phenomena of Earth. Geography is an all-encompassing discipline that seeks an understanding of Earth and its human and natural complexities—not merely where objects are, but also how they have changed and come to be.
Geomatics
Geomatics is defined in the ISO/TC 211 series of standards as the "discipline concerned with the collection, distribution, storage, analysis, processing, presentation of geographic data or geographic information". Under another definition, it consists of products, services and tools involved in the collection, integration and management of geographic (geospatial) data. It is also known as geomatic(s) engineering (geodesy and geoinformatics engineering or geospatial engineering).
Geoinformatics
Geoinformatics is the science and technology that develop and use data, software, and computing facilities in the cyberinfrastructure ecosystem to address the needs of geosciences and related branches of science and engineering. In a general sense, geoinformatics can be understood as "a variety of efforts to promote collaboration between computer scientists and geoscientists to solve complex scientific questions".
Technical geography
Technical geography is the branch of geography that involves using, studying, and creating tools to obtain, analyze, interpret, understand, and communicate spatial information. The other branches, most commonly limited to human geography and physical geography, can usually apply the concepts and techniques of technical geography. However, the methods and theory are distinct, and a technical geographer may be more concerned with the technological and theoretical concepts than the nature of the data.
Geographic information system
A geographic information system (GIS) consists of integrated computer hardware and software that store, manage, analyze, edit, output, and visualize geographic data. Much of this often happens within a spatial database, however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.
Geostatistics
Geostatistics is a branch of statistics focusing on spatial or spatiotemporal datasets. Developed originally to predict probability distributions of ore grades for mining operations, it is currently applied in diverse disciplines including petroleum geology, hydrogeology, hydrology, meteorology, oceanography, geochemistry, geometallurgy, geography, forestry, environmental control, landscape ecology, soil science, and agriculture (esp. in precision farming).
Geographic data and information
Geographic data and information is defined in the ISO/TC 211 series of standards as data and information having an implicit or explicit association with a location relative to Earth (a geographic location or geographic position). It is also called geospatial data and information, georeferenced data and information, as well as geodata and geoinformation. Approximately 90% of government sourced data has a location component. Location information (known by the many names mentioned here) is stored in a geographic information system (GIS).
Spatial analysis
Spatial analysis is any of the formal techniques which studies entities using their topological, geometric, or geographic properties. Spatial analysis includes a variety of techniques using different analytic approaches, especially spatial statistics. It may be applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, or to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures.
Landscape ecology
Landscape ecology is the science of studying and improving relationships between ecological processes in the environment and particular ecosystems. This is done within a variety of landscape scales, development spatial patterns, and organizational levels of research and policy. Concisely, landscape ecology can be described as the science of "landscape diversity" as the synergetic result of biodiversity and geodiversity.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.