In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root.
The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, double roots counted twice). Hence the expression, "counted with multiplicity".
If multiplicity is ignored, this may be emphasized by counting the number of distinct elements, as in "the number of distinct roots". However, whenever a set (as opposed to multiset) is formed, multiplicity is automatically ignored, without requiring use of the term "distinct".
p-adic valuation
In prime factorization, the multiplicity of a prime factor is its -adic valuation. For example, the prime factorization of the integer 60 is
60 = 2 × 2 × 3 × 5,
the multiplicity of the prime factor 2 is 2, while the multiplicity of each of the prime factors 3 and 5 is 1. Thus, 60 has four prime factors allowing for multiplicities, but only three distinct prime factors.
Let be a field and be a polynomial in one variable with coefficients in . An element is a root of multiplicity of if there is a polynomial such that and . If , then a is called a simple root. If , then is called a multiple root.
For instance, the polynomial has 1 and −4 as roots, and can be written as . This means that 1 is a root of multiplicity 2, and −4 is a simple root (of multiplicity 1). The multiplicity of a root is the number of occurrences of this root in the complete factorization of the polynomial, by means of the fundamental theorem of algebra.
If is a root of multiplicity of a polynomial, then it is a root of multiplicity of the derivative of that polynomial, unless the characteristic of the underlying field is a divisor of k, in which case is a root of multiplicity at least of the derivative.
The discriminant of a polynomial is zero if and only if the polynomial has a multiple root.
The graph of a polynomial function f touches the x-axis at the real roots of the polynomial.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
:
Related courses (6)
Related lectures (49)
Explores characteristic polynomials, similarity of matrices, and eigenvalues in linear transformations.
Covers advanced counting, probabilities, and information theory, including solving linear homogeneous recurrence relations and hat-check problems.
Explores the diagonalization of matrices through eigenvalues and eigenvectors, emphasizing the importance of bases and subspaces.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k. A solution of a polynomial system is a set of values for the xis which belong to some algebraically closed field extension K of k, and make all equations true. When k is the field of rational numbers, K is generally assumed to be the field of complex numbers, because each solution belongs to a field extension of k, which is isomorphic to a subfield of the complex numbers.
In algebra, the length of a module is a generalization of the dimension of a vector space which measures its size. page 153 It is defined to be the length of the longest chain of submodules. The modules of finite length are finitely generated modules, but as opposite to vector spaces, many finitely generated modules have an infinite length. Finitely generated modules of finite length are also called Artinian modules and are at the basis of the theory of Artinian rings. For vector spaces, the length equals the dimension.
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks.
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...
Time has always been a central factor in understanding the challenges of daily mobility. For a long time, and still today, methods of economic evaluation of transport projects have monetized time savings so that they can be included in the cost–benefit ana ...
We study harmonic mappings of the form , where h is an analytic function. In particular, we are interested in the index (a generalized multiplicity) of the zeros of such functions. Outside the critical set of f, where the Jacobian of f is non-vanishing, it ...