Adaptive control is the control method used by a controller which must adapt to a controlled system with parameters which vary, or are initially uncertain.cite journal|author=Chengyu Cao, Lili Ma, Yunjun Xu|title="Adaptive Control Theory and Applications", Journal of Control Science and Engineering'|volume=2012|issue=1|year=2012|doi=10.1155/2012/827353|pages=1,2|doi-access=free For example, as an aircraft flies, its mass will slowly decrease as a result of fuel consumption; a control law is needed that adapts itself to such changing conditions. Adaptive control is different from robust control in that it does not need a priori information about the bounds on these uncertain or time-varying parameters; robust control guarantees that if the changes are within given bounds the control law need not be changed, while adaptive control is concerned with control law changing itself. The foundation of adaptive control is parameter estimation, which is a branch of system identification. Common methods of estimation include recursive least squares and gradient descent. Both of these methods provide update laws that are used to modify estimates in real-time (i.e., as the system operates). Lyapunov stability is used to derive these update laws and show convergence criteria (typically persistent excitation; relaxation of this condition are studied in Concurrent Learning adaptive control). Projection and normalization are commonly used to improve the robustness of estimation algorithms. In general, one should distinguish between: Feedforward adaptive control Feedback adaptive control as well as between Direct methods Indirect methods Hybrid methods Direct methods are ones wherein the estimated parameters are those directly used in the adaptive controller. In contrast, indirect methods are those in which the estimated parameters are used to calculate required controller parameters. Hybrid methods rely on both estimation of parameters and direct modification of the control law.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
ME-422: Multivariable control
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be placed on discrete
ME-524: Advanced control systems
This course covers some theoretical and practical aspects of robust and adaptive control. This includes H-2 and H-infinity control in model-based and data-driven framework by convex optimization, dire
MICRO-462: Learning and adaptive control for robots
To cope with constant and unexpected changes in their environment, robots need to adapt their paths rapidly and appropriately without endangering humans. this course presents method to react within mi
Show more