In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity (also a vector quantity), then the object's momentum p (from Latin pellere "push, drive") is:
In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is equivalent to the newton-second.
Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference, but in any inertial frame it is a conserved quantity, meaning that if a closed system is not affected by external forces, its total linear momentum does not change. Momentum is also conserved in special relativity (with a modified formula) and, in a modified form, in electrodynamics, quantum mechanics, quantum field theory, and general relativity. It is an expression of one of the fundamental symmetries of space and time: translational symmetry.
Advanced formulations of classical mechanics, Lagrangian and Hamiltonian mechanics, allow one to choose coordinate systems that incorporate symmetries and constraints. In these systems the conserved quantity is generalized momentum, and in general this is different from the kinetic momentum defined above. The concept of generalized momentum is carried over into quantum mechanics, where it becomes an operator on a wave function. The momentum and position operators are related by the Heisenberg uncertainty principle.
In continuous systems such as electromagnetic fields, fluid dynamics and deformable bodies, a momentum density can be defined, and a continuum version of the conservation of momentum leads to equations such as the Navier–Stokes equations for fluids or the Cauchy momentum equation for deformable solids or fluids.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basic principles of bioprocess engineering and highlights the similarities and differences with chemical engineering. Without going into the fundamentals, it proposes an ove
Ce cours est une première introduction à la mécanique des fluides. On aborde tout d'abord les propriétés physiques des fluides et quelques principes fondamentaux de la physique, dont ceux de conservat
Provides the students with basic notions and tools for the analysis of dynamic systems. Shows them how to develop mathematical models of dynamic systems and perform analysis in time and frequency doma
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is based on two postulates: The laws of physics are invariant (identical) in all inertial frames of reference (that is, frames of reference with no acceleration). The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, unless acted upon by a force. When a body is acted upon by a force, the time rate of change of its momentum equals the force. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
While momentum-based accelerated variants of stochastic gradient descent (SGD) are widely used when training machine learning models, there is little theoretical understanding on the generalization error of such methods. In this work, we first show that th ...
Brookline2024
, ,
In this work, we investigate the effect of momentum on the optimisation trajectory of gradient descent. We leverage a continuous-time approach in the analysis of momentum gradient descent with step size γ and momentum parameter β that allows u ...
By operating with the Scale Relativity Theory in the dynamics of complex systems, we can achieve a description of these complex systems through a holographic-type perspective. Then, gauge invariances of a Riccati-type become functional in complex system dy ...