Concept

Hermite interpolation

Summary
In numerical analysis, Hermite interpolation, named after Charles Hermite, is a method of polynomial interpolation, which generalizes Lagrange interpolation. Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function. Instead, Hermite interpolation computes a polynomial of degree less than mn such that the polynomial and its m − 1 first derivatives have the same values at n given points as a given function and its m − 1 first derivatives. Hermite's method of interpolation is closely related to the Newton's interpolation method, in that both are derived from the calculation of divided differences. However, there are other methods for computing a Hermite interpolating polynomial. One can use linear algebra, by taking the coefficients of the interpolating polynomial as unknowns, and writing as linear equations the constraints that the interpolating polynomial must satisfy. For another method, see . Hermite interpolation consists of computing a polynomial of degree as low as possible that matches an unknown function both in observed value, and the observed value of its first m derivatives. This means that n(m + 1) values must be known. The resulting polynomial has a degree less than n(m + 1). (In a more general case, there is no need for m to be a fixed value; that is, some points may have more known derivatives than others. In this case the resulting polynomial has a degree less than the number of data points.) Let us consider a polynomial P(x) of degree less than n(m + 1) with indeterminate coefficients; that is, the coefficients of P(x) are n(m + 1) new variables. Then, by writing the constraints that the interpolating polynomial must satisfy, one gets a system of n(m + 1) linear equations in n(m + 1) unknowns. In general, such a system has exactly one solution. Charles Hermite proved that this is effectively the case here, as soon as the x_i are pairwise different, and provided a method for computing it, which is described below.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood