In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point. They are in contrast to parallel lines.
In a triangle, four basic types of sets of concurrent lines are altitudes, angle bisectors, medians, and perpendicular bisectors:
A triangle's altitudes run from each vertex and meet the opposite side at a right angle. The point where the three altitudes meet is the orthocenter.
Angle bisectors are rays running from each vertex of the triangle and bisecting the associated angle. They all meet at the incenter.
Medians connect each vertex of a triangle to the midpoint of the opposite side. The three medians meet at the centroid.
Perpendicular bisectors are lines running out of the midpoints of each side of a triangle at 90 degree angles. The three perpendicular bisectors meet at the circumcenter.
Other sets of lines associated with a triangle are concurrent as well. For example:
Any median (which is necessarily a bisector of the triangle's area) is concurrent with two other area bisectors each of which is parallel to a side.
A cleaver of a triangle is a line segment that bisects the perimeter of the triangle and has one endpoint at the midpoint of one of the three sides. The three cleavers concur at the center of the Spieker circle, which is the incircle of the medial triangle.
A splitter of a triangle is a line segment having one endpoint at one of the three vertices of the triangle and bisecting the perimeter. The three splitters concur at the Nagel point of the triangle.
Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter, and each triangle has one, two, or three of these lines. Thus if there are three of them, they concur at the incenter.
The Tarry point of a triangle is the point of concurrency of the lines through the vertices of the triangle perpendicular to the corresponding sides of the triangle's first Brocard triangle.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row". In any geometry, the set of points on a line are said to be collinear. In Euclidean geometry this relation is intuitively visualized by points lying in a row on a "straight line".
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment. The midpoint of a segment in n-dimensional space whose endpoints are and is given by That is, the ith coordinate of the midpoint (i = 1, 2, ..., n) is Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction.
In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.
Analysis of fringe patterns for the accurate estimation of phase and phase derivatives is of crucial importance in optical interferometry as these quantities provide important information on the physical parameters under study. A wide range of applications ...
Over the last 30 years, our understanding of the neurocognitive bases of consciousness has improved, mostly through studies employing vision. While studying consciousness in the visual modality presents clear advantages, we believe that a comprehensive sci ...
We define the bisector energy E(P) of a set P in R-2 to be the number of quadruples (a, b, c, d) is an element of P-4 such that a, b determine the same perpendicular bisector as c, d. Equivalently, E(P) is the number of isosceles trapezoids determined by P ...