Résumé
En géométrie affine, le milieu d'un segment est l'isobarycentre des deux extrémités du segment. Dans le cadre plus spécifique de la géométrie euclidienne, c'est aussi le point de ce segment situé à égale distance de ses extrémités. Symétrie centrale Deux points distincts A et A sont symétriques par rapport à un point O si et seulement si O est le milieu du segment [AA]. Dans la symétrie centrale de centre O, le symétrique de O est O lui-même. L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB]. Le milieu du segment [AB] peut donc être défini comme l'intersection de la droite (AB) avec la médiatrice du segment [AB]. Cette définition est intéressante, car elle permet de placer le milieu du segment [AB] par une construction à la règle et au compas. Remarques Les arcs de cercles doivent avoir des rayons supérieurs à la moitié de la longueur du segment, pour que leur intersection ne soit pas vide. Il est en théorie possible de se contenter de la première étape en traçant les cercles en entiers : on obtient alors deux points d'intersection qu'il suffit de relier pour tracer la médiatrice. Cette méthode n'est toutefois pas toujours applicable concrètement, si le segment se trouve trop près du bord de la feuille de tracé par exemple. Dans l'espace à trois dimensions, le milieu d'un segment est l'intersection de ce segment avec son plan médiateur. Dans un espace affine, le milieu d'un segment [AB] est l'isobarycentre de la paire {A, B}, c'est-à-dire le seul point I tel que Cette égalité est équivalente à chacune des propriétés suivantes : il existe un point O tel que ; pour tout point O, on a : . Si le plan (ou l'espace) euclidien est muni d'un repère cartésien, les coordonnées du milieu d'un segment sont les demi-sommes de chacune des coordonnées des extrémités du segment. Autrement dit, dans le plan, le milieu du segment d'extrémités A(xA ; yA) et B(xB ; yB) est le point de coordonnées . On a une propriété analogue dans l'espace en ajoutant une troisième coordonnée.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (7)