En géométrie affine, le milieu d'un segment est l'isobarycentre des deux extrémités du segment. Dans le cadre plus spécifique de la géométrie euclidienne, c'est aussi le point de ce segment situé à égale distance de ses extrémités.
Symétrie centrale
Deux points distincts A et A sont symétriques par rapport à un point O si et seulement si O est le milieu du segment [AA]. Dans la symétrie centrale de centre O, le symétrique de O est O lui-même.
L'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB]. Le milieu du segment [AB] peut donc être défini comme l'intersection de la droite (AB) avec la médiatrice du segment [AB]. Cette définition est intéressante, car elle permet de placer le milieu du segment [AB] par une construction à la règle et au compas.
Remarques
Les arcs de cercles doivent avoir des rayons supérieurs à la moitié de la longueur du segment, pour que leur intersection ne soit pas vide.
Il est en théorie possible de se contenter de la première étape en traçant les cercles en entiers : on obtient alors deux points d'intersection qu'il suffit de relier pour tracer la médiatrice. Cette méthode n'est toutefois pas toujours applicable concrètement, si le segment se trouve trop près du bord de la feuille de tracé par exemple.
Dans l'espace à trois dimensions, le milieu d'un segment est l'intersection de ce segment avec son plan médiateur.
Dans un espace affine, le milieu d'un segment [AB] est l'isobarycentre de la paire {A, B}, c'est-à-dire le seul point I tel que
Cette égalité est équivalente à chacune des propriétés suivantes :
il existe un point O tel que ;
pour tout point O, on a : .
Si le plan (ou l'espace) euclidien est muni d'un repère cartésien, les coordonnées du milieu d'un segment sont les demi-sommes de chacune des coordonnées des extrémités du segment. Autrement dit, dans le plan, le milieu du segment d'extrémités A(xA ; yA) et B(xB ; yB) est le point de coordonnées . On a une propriété analogue dans l'espace en ajoutant une troisième coordonnée.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En géométrie, un quadrilatère inscriptible (ou cyclique ) est un quadrilatère dont les sommets se trouvent tous sur un seul et même cercle. Les sommets sont dits cocycliques. Le quadrilatère est dit inscrit dans le cercle, et le cercle, circonscrit au quadrilatère. Un quadrilatère convexe est inscriptible si et seulement si les quatre médiatrices des côtés sont concourantes. Le point de concours est alors le centre du cercle circonscrit et les médiatrices des diagonales passent par ce point.
En mathématiques, des droites concourantes sont des droites qui ont un point d'intersection commun, ce point étant appelé point de concours. Lorsque seules deux droites sont en jeu, le fait qu'elles soient concourantes est équivalent au fait qu'elles soient sécantes, ce qui fait que le vocable ne s'emploie pas dans ce cadre. En revanche, à partir de trois droites en présence, les deux propriétés ne sont pas équivalentes : trois droites concourantes sont nécessairement sécantes deux à deux mais l'implication réciproque est fausse.
En géométrie, un parallélogramme est un quadrilatère dont les segments diagonaux se coupent en leur milieu. En géométrie purement affine, un quadrilatère (ABCD) est un parallélogramme (au sens défini en introduction) si et seulement s'il satisfait l'une des propriétés équivalentes suivantes : les vecteurs et sont égaux ; les vecteurs et sont égaux. Si de plus les quatre sommets sont trois à trois non alignés, ces propriétés sont aussi équivalentes à la suivante : les côtés opposés sont parallèles deux à deux, c'est-à-dire : (AB) // (CD) et (AD) // (BC).
Unrefinement is a tool that allows to perform faster numerical simulations by controlling the level of precision in the specified area. We introduce an algorithm that creates a coarser geometry from an initial regular geometry, which is represented with re ...
Conjugated polymers and small molecules are a promising class of semiconducting materials for application in macroelectronic and energy conversion devices. The development of high performance devices employing this class of semicrystalline materials ultima ...
We define the bisector energy E(P) of a set P in R-2 to be the number of quadruples (a, b, c, d) is an element of P-4 such that a, b determine the same perpendicular bisector as c, d. Equivalently, E(P) is the number of isosceles trapezoids determined by P ...
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept