In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a single-variable function f defined for a real variable x, the function's derivative f′, and an initial guess x0 for a root of f. If the function satisfies sufficient assumptions and the initial guess is close, then
is a better approximation of the root than x0. Geometrically, (x1, 0) is the intersection of the x-axis and the tangent of the graph of f at (x0, f(x0)): that is, the improved guess is the unique root of the linear approximation at the initial point. The process is repeated as
until a sufficiently precise value is reached. The number of correct digits roughly doubles with each step. This algorithm is first in the class of Householder's methods, succeeded by Halley's method. The method can also be extended to complex functions and to systems of equations.
The idea is to start with an initial guess, then to approximate the function by its tangent line, and finally to compute the x-intercept of this tangent line. This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated.
If the tangent line to the curve f(x) at x = xn intercepts the x-axis at xn+1 then the slope is
Solving for xn+1 gives
We start the process with some arbitrary initial value x0. (The closer to the zero, the better. But, in the absence of any intuition about where the zero might lie, a "guess and check" method might narrow the possibilities to a reasonably small interval by appealing to the intermediate value theorem.) The method will usually converge, provided this initial guess is close enough to the unknown zero, and that f(x0) ≠ 0. Furthermore, for a zero of multiplicity 1, the convergence is at least quadratic (see Rate of convergence) in a neighbourhood of the zero, which intuitively means that the number of correct digits roughly doubles in every step.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course focuses on the dynamic behavior of a power system. It presents the basic definitions, concepts and models for angular stability analysis with reference to transient stability, steady state
This course presents the problem of static optimization, with and without (equality and inequality) constraints, both from the theoretical (optimality conditions) and methodological (algorithms) point
In mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound).
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.
In linear algebra, an n-by-n square matrix A is called invertible (also nonsingular, nondegenerate or (rarely used) regular), if there exists an n-by-n square matrix B such that where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1. Matrix inversion is the process of finding the matrix B that satisfies the prior equation for a given invertible matrix A.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
This paper presents a geometry-driven approach to form-finding with reused stock elements. Our proposed workflow uses a K-mean algorithm to cluster stock elements and incorporate their geometrical values early in the form-finding process. A feedback loop i ...
The project introduces an innovative visual method for analysing libraries and archives, with a focus on Bibliotheca Hertziana’s library collection. This collection, which dates back over a century, is examined by integrating user loan data with deep mappi ...
2024
,
This paper proposes a generic and unified model of the power flow (PF) problem for multiterminal hybrid AC/DC networks. The proposed model is an extension of the standard AC-PF. The DC network is treated as an AC one and, in addition to the Slack, PV and P ...