Summary
In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a single-variable function f defined for a real variable x, the function's derivative f′, and an initial guess x0 for a root of f. If the function satisfies sufficient assumptions and the initial guess is close, then is a better approximation of the root than x0. Geometrically, (x1, 0) is the intersection of the x-axis and the tangent of the graph of f at (x0, f(x0)): that is, the improved guess is the unique root of the linear approximation at the initial point. The process is repeated as until a sufficiently precise value is reached. The number of correct digits roughly doubles with each step. This algorithm is first in the class of Householder's methods, succeeded by Halley's method. The method can also be extended to complex functions and to systems of equations. The idea is to start with an initial guess, then to approximate the function by its tangent line, and finally to compute the x-intercept of this tangent line. This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated. If the tangent line to the curve f(x) at x = xn intercepts the x-axis at xn+1 then the slope is Solving for xn+1 gives We start the process with some arbitrary initial value x0. (The closer to the zero, the better. But, in the absence of any intuition about where the zero might lie, a "guess and check" method might narrow the possibilities to a reasonably small interval by appealing to the intermediate value theorem.) The method will usually converge, provided this initial guess is close enough to the unknown zero, and that f(x0) ≠ 0. Furthermore, for a zero of multiplicity 1, the convergence is at least quadratic (see Rate of convergence) in a neighbourhood of the zero, which intuitively means that the number of correct digits roughly doubles in every step.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.