En mathématiques, et plus particulièrement en théorie des catégories, un objet exponentiel est un équivalent catégorique à un espace fonctionnel en théorie des ensembles. Les catégories avec tous les produits finis et tous les objets exponentiels sont appelées catégories cartésiennes fermées. Un objet exponentiel peut aussi être appelé un objet puissance ou objet des morphismes. Soit C une catégorie avec produits et soient Y et Z des objets de C. L'objet exponentiel ZY peut être défini comme un morphisme universel du foncteur –×Y à Z. (Le foncteur –×Y de C dans C envoie l'objet X sur X×Y et le morphisme φ sur φ×idY). Explicitement, un objet ZY avec un morphisme est un objet exponentiel si pour tout objet X et tout morphisme g : (X×Y) → Z il existe un unique morphisme tel que le diagramme suivant commute : centré|Universal property of the exponential object Si l'objet exponentiel ZY existe pour tous les objets Z dans C, alors le foncteur qui envoie Z sur ZY est un adjoint à droite du foncteur –×Y. Dans ce cas, il y a une bijection naturelle entre les ensembles des morphismes Les morphismes et sont parfois appelés adjoints exponentiels. On remarque que pour dans la catégorie des ensembles, . Dans la catégorie des ensembles, l'objet exponentiel est l'ensemble de toutes les applications de dans . L'application est l'application évaluation qui envoie la paire (f, y) sur f(y). Pour toute application , l'application est la forme curryfiée de g : Dans la catégorie des espaces topologiques, l'objet exponentiel ZY existe si Y est un espace localement compact. Dans ce cas, l'espace ZY est l'ensemble de toutes les applications continues de Y dans Z muni de la topologie compacte-ouverte. L'application évaluation est la même que pour la catégorie des ensembles. Si Y n'est pas localement compact, l'objet exponentiel peut ne pas exister (l'espace ZY existe toujours mais n'est pas forcément un objet exponentiel car l'évaluation peut ne pas être continue). Pour cette raison, la catégorie des espaces topologique n'est pas cartésienne fermée.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-429: Representation Theory II - Lie groups and algebras
This is a standard course on Lie groups, Lie algebras and their representations.
Concepts associés (16)
Topos (mathématiques)
En mathématiques, un topos (au pluriel topos ou topoï) est un type particulier de catégorie. La théorie des topoï est polyvalente et est utilisée dans des domaines aussi variés que la logique, la topologie ou la géométrie algébrique. Un topos peut être défini comme une catégorie pourvue : de limites et colimites finies ; d'exponentielles ; d'un . D'autres définitions équivalentes sont données plus bas.
Topologie compacte-ouverte
En mathématiques, la topologie compacte-ouverte est une topologie définie sur l'ensemble des applications continues entre deux espaces topologiques. C'est l'une des topologies les plus utilisées sur un tel espace fonctionnel, et elle est employée en théorie de l'homotopie et en analyse fonctionnelle. Elle a été introduite par Ralph Fox en 1945. Soient X et Y deux espaces topologiques et C(X,Y) l'espace des applications continues de X dans Y.
Foncteur Hom
En mathématiques, le foncteur Hom est un foncteur associé aux morphismes de la catégorie des ensembles. Il est central en théorie des catégories, notamment du fait de son rôle dans le lemme de Yoneda et parce qu'il permet de définir le foncteur Ext. Soit une catégorie localement petite. Pour tout couple d'objets A et B dans cette catégorie, un morphisme induit une fonction pour tout objet X.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.