Summary
In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock and the financial status of a gambler. Random walks have applications to engineering and many scientific fields including ecology, psychology, computer science, physics, chemistry, biology, economics, and sociology. The term random walk was first introduced by Karl Pearson in 1905. A popular random walk model is that of a random walk on a regular lattice, where at each step the location jumps to another site according to some probability distribution. In a simple random walk, the location can only jump to neighboring sites of the lattice, forming a lattice path. In a simple symmetric random walk on a locally finite lattice, the probabilities of the location jumping to each one of its immediate neighbors are the same. The best-studied example is the random walk on the d-dimensional integer lattice (sometimes called the hypercubic lattice) . If the state space is limited to finite dimensions, the random walk model is called a simple bordered symmetric random walk, and the transition probabilities depend on the location of the state because on margin and corner states the movement is limited. An elementary example of a random walk is the random walk on the integer number line, , which starts at 0 and at each step moves +1 or −1 with equal probability. This walk can be illustrated as follows. A marker is placed at zero on the number line, and a fair coin is flipped. If it lands on heads, the marker is moved one unit to the right. If it lands on tails, the marker is moved one unit to the left. After five flips, the marker could now be on -5, -3, -1, 1, 3, 5.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.