Summary
In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock and the financial status of a gambler. Random walks have applications to engineering and many scientific fields including ecology, psychology, computer science, physics, chemistry, biology, economics, and sociology. The term random walk was first introduced by Karl Pearson in 1905. A popular random walk model is that of a random walk on a regular lattice, where at each step the location jumps to another site according to some probability distribution. In a simple random walk, the location can only jump to neighboring sites of the lattice, forming a lattice path. In a simple symmetric random walk on a locally finite lattice, the probabilities of the location jumping to each one of its immediate neighbors are the same. The best-studied example is the random walk on the d-dimensional integer lattice (sometimes called the hypercubic lattice) . If the state space is limited to finite dimensions, the random walk model is called a simple bordered symmetric random walk, and the transition probabilities depend on the location of the state because on margin and corner states the movement is limited. An elementary example of a random walk is the random walk on the integer number line, , which starts at 0 and at each step moves +1 or −1 with equal probability. This walk can be illustrated as follows. A marker is placed at zero on the number line, and a fair coin is flipped. If it lands on heads, the marker is moved one unit to the right. If it lands on tails, the marker is moved one unit to the left. After five flips, the marker could now be on -5, -3, -1, 1, 3, 5.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (28)
BIO-372: Microbiology
This course will provide an introduction to fundamental concepts in microbiology. Special emphasis will be given to the surprising and often counter-intuitive physical world inhabited by microorganism
BIO-692: Symmetry and Conservation in the Cell
This course instructs students in the use of advanced computational models and simulations in cell biology. The importance of dimensionality, symmetry and conservation in models of self-assembly, memb
MGT-416: Causal inference
Students will learn the core concepts and techniques of network analysis with emphasis on causal inference. Theory and application will be balanced, with students working directly with network data th
Show more
Related publications (183)

Metastability of the Potts Ferromagnet on Random Regular Graphs

Jean Bernoulli Ravelomanana

We study the performance of Markov chains for the q-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis ...
SPRINGER2023
Show more
Related concepts (24)
Wiener process
In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown.
Diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, like in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios.
Stochastic process
In probability theory and related fields, a stochastic (stəˈkæstɪk) or random process is a mathematical object usually defined as a sequence of random variables, where the index of the sequence has the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule.
Show more
Related MOOCs (7)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more