Résumé
In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes (càdlàg stochastic processes with stationary independent increments) and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics. The Wiener process plays an important role in both pure and applied mathematics. In pure mathematics, the Wiener process gave rise to the study of continuous time martingales. It is a key process in terms of which more complicated stochastic processes can be described. As such, it plays a vital role in stochastic calculus, diffusion processes and even potential theory. It is the driving process of Schramm–Loewner evolution. In applied mathematics, the Wiener process is used to represent the integral of a white noise Gaussian process, and so is useful as a model of noise in electronics engineering (see Brownian noise), instrument errors in filtering theory and disturbances in control theory. The Wiener process has applications throughout the mathematical sciences. In physics it is used to study Brownian motion, the diffusion of minute particles suspended in fluid, and other types of diffusion via the Fokker–Planck and Langevin equations. It also forms the basis for the rigorous path integral formulation of quantum mechanics (by the Feynman–Kac formula, a solution to the Schrödinger equation can be represented in terms of the Wiener process) and the study of eternal inflation in physical cosmology. It is also prominent in the mathematical theory of finance, in particular the Black–Scholes option pricing model.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (8)
Personnes associées (2)
Concepts associés (49)
Marche aléatoire
En mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou effectués « au hasard ». On emploie également fréquemment les expressions marche au hasard, promenade aléatoire ou random walk en anglais. Ces pas aléatoires sont de plus totalement décorrélés les uns des autres ; cette dernière propriété, fondamentale, est appelée caractère markovien du processus, du nom du mathématicien Markov.
Martingale (calcul stochastique)
Une martingale est une séquence de variables aléatoires (autrement dit un processus stochastique), telles que l'espérance mathématique à l'instant , conditionnellement à l'information disponible à un moment préalable , notée , vaut (avec ). En particulier, dans un processus discret (t entier), . Une martingale peut modéliser les gains / pertes accumulés par un joueur au cours de répétitions indépendantes d'un jeu de hasard à espérance nulle (même si le joueur s'autorise à modifier sa mise en fonction des gains passés), d'où l'emprunt du terme martingale au monde du jeu.
Processus de Wiener
En mathématiques, le processus de Wiener est un processus stochastique à temps continu nommé ainsi en l'honneur de Norbert Wiener. Il permet de modéliser le mouvement brownien. C'est l'un des processus de Lévy les mieux connus. Il est souvent utilisé en mathématique appliquée, en économie et en physique. Le processus de Wiener est défini comme un mouvement brownien standard monodimensionnel, démarrant à l'origine, et à valeurs réelles.
Afficher plus
Cours associés (22)
EE-726: Sparse stochastic processes
We cover the theory and applications of sparse stochastic processes (SSP). SSP are solutions of differential equations driven by non-Gaussian innovations. They admit a parsimonious representation in a
FIN-415: Probability and stochastic calculus
This course gives an introduction to probability theory and stochastic calculus in discrete and continuous time. We study fundamental notions and techniques necessary for applications in finance such
MATH-431: Theory of stochastic calculus
Introduction to the mathematical theory of stochastic calculus: construction of stochastic Ito integral, proof of Ito formula, introduction to stochastic differential equations, Girsanov theorem and F
Afficher plus
Séances de cours associées (146)
Martingales et le mouvement brownien: Comportement global et longueur de jeu zéro
Explore le comportement du mouvement brownien et sa longueur à zéro.
Génération gaussienne conditionnelle
Explore la génération de distributions gaussiennes multivariées et les défis de la factorisation des matrices de covariance.
Markov Chain Games
Explore les jeux de la chaîne de Markov, les probabilités de frappe et les temps de frappe attendus dans un ensemble de cibles.
Afficher plus
MOOCs associés (2)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.