In applied mathematics, the nonuniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing, magnetic resonance imaging, and the numerical solution of partial differential equations. As a generalized approach for nonuniform sampling, the NUDFT allows one to obtain frequency domain information of a finite length signal at any frequency. One of the reasons to adopt the NUDFT is that many signals have their energy distributed nonuniformly in the frequency domain. Therefore, a nonuniform sampling scheme could be more convenient and useful in many digital signal processing applications. For example, the NUDFT provides a variable spectral resolution controlled by the user. The nonuniform discrete Fourier transform transforms a sequence of complex numbers into another sequence of complex numbers defined by where are sample points and are frequencies. Note that if and , then equation () reduces to the discrete Fourier transform. There are three types of NUDFTs. The nonuniform discrete Fourier transform of type I (NUDFT-I) uses uniform sample points but nonuniform (i.e. non-integer) frequencies . This corresponds to evaluating a generalized Fourier series at equispaced points. It is also known as NDFT. The nonuniform discrete Fourier transform of type II (NUDFT-II) uses uniform (i.e. integer) frequencies but nonuniform sample points . This corresponds to evaluating a Fourier series at nonequispaced points. It is also known as adjoint NDFT. The nonuniform discrete Fourier transform of type III (NUDFT-III) uses both nonuniform sample points and nonuniform frequencies . This corresponds to evaluating a generalized Fourier series at nonequispaced points. It is also known as NNDFT. A similar set of NUDFTs can be defined by substituting for in equation ().

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
EE-205: Signals and systems (for EL)
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
COM-514: Mathematical foundations of signal processing
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
COM-202: Signal processing
Signal processing theory and applications: discrete and continuous time signals; Fourier analysis, DFT, DTFT, CTFT, FFT, STFT; linear time invariant systems; filter design and adaptive filtering; samp
Show more
Related lectures (322)
Fourier Series: Understanding Coefficients and Periodicity
Explores Fourier series coefficients, periodicity, and series relations.
Discrete Fourier Transform: Main Properties
Covers the main properties of the Discrete Fourier Transform and convolution methods.
Frequency Estimation: Deterministic Signals with Low Noise Level
Explores frequency estimation in deterministic signals using the DFT and spectral resolution.
Show more
Related publications (301)

Verification of the Fourier-enhanced 3D finite element Poisson solver of the gyrokinetic full-f code PICLS

Laurent Villard, Stephan Brunner, Alberto Bottino, Moahan Murugappan

We introduce and derive the Fourier -enhanced 3D electrostatic field solver of the gyrokinetic full -f PIC code PICLS. The solver makes use of a Fourier representation in one periodic direction of the domain to make the solving of the system easily paralle ...
Elsevier2024

Discrete choice modeling in the era of big data

Nicola Marco Ortelli

The technological advancements of the past decades have allowed transforming an increasing part of our daily actions and decisions into storable data, leading to a radical change in the scale and scope of available data in relation to virtually any object ...
EPFL2024

Impact of beam-coupling impedance on the Schottky spectrum of bunched beam

Tatiana Pieloni, Nicolas Frank Mounet, Christophe Emmanuel R. Lannoy

The Schottky monitors of the Large Hadron Collider (LHC) can be used for non-invasive beam diagnostics to estimate various bunch characteristics, such as tune, chromaticity, bunch profile or synchrotron frequency distribution. However, collective effects, ...
Iop Publishing Ltd2024
Show more
Related concepts (7)
Least-squares spectral analysis
Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
Discrete-time Fourier transform
In mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Spectral density estimation
In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density (also known as the power spectral density) of a signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.
Show more
Related MOOCs (12)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.