Concept

Elliptic geometry

Summary
Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point (rather than two). Because of this, the elliptic geometry described in this article is sometimes referred to as single elliptic geometry whereas spherical geometry is sometimes referred to as double elliptic geometry. The appearance of this geometry in the nineteenth century stimulated the development of non-Euclidean geometry generally, including hyperbolic geometry. Elliptic geometry has a variety of properties that differ from those of classical Euclidean plane geometry. For example, the sum of the interior angles of any triangle is always greater than 180°. In elliptic geometry, two lines perpendicular to a given line must intersect. In fact, the perpendiculars on one side all intersect at a single point called the absolute pole of that line. The perpendiculars on the other side also intersect at a point. However, unlike in spherical geometry, the poles on either side are the same. This is because there are no antipodal points in elliptic geometry. For example, this is achieved in the hyperspherical model (described below) by making the "points" in our geometry actually be pairs of opposite points on a sphere. The reason for doing this is that it allows elliptic geometry to satisfy the axiom that there is a unique line passing through any two points. Every point corresponds to an absolute polar line of which it is the absolute pole. Any point on this polar line forms an absolute conjugate pair with the pole. Such a pair of points is orthogonal, and the distance between them is a quadrant. The distance between a pair of points is proportional to the angle between their absolute polars. As explained by H. S. M. Coxeter: The name "elliptic" is possibly misleading. It does not imply any direct connection with the curve called an ellipse, but only a rather far-fetched analogy.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.