Résumé
Spherical geometry is the geometry of the two-dimensional surface of a sphere. Long studied for its practical applications – spherical trigonometry – to navigation, spherical geometry bears many similarities and relationships to, and important differences from, Euclidean plane geometry. The sphere has for the most part been studied as a part of 3-dimensional Euclidean geometry (often called solid geometry), the surface thought of as placed inside an ambient 3-d space. It can also be analyzed by "intrinsic" methods that only involve the surface itself, and do not refer to, or even assume the existence of, any surrounding space outside or inside the sphere. In plane (Euclidean) geometry, the basic concepts are points and (straight) lines. In spherical geometry, the basic concepts are point and great circle. However, two great circles on a plane intersect in two antipodal points, unlike coplanar lines in Elliptic geometry. In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points provided they are close enough. Or, in the (also intrinsic) axiomatic approach analogous to Euclid's axioms of plane geometry, "great circle" is simply an undefined term, together with postulates stipulating the basic relationships between great circles and the also-undefined "points". This is the same as Euclid's method of treating point and line as undefined primitive notions and axiomatizing their relationships. Great circles in many ways play the same logical role in spherical geometry as lines in Euclidean geometry, e.g., as the sides of (spherical) triangles. This is more than an analogy; spherical and plane geometry and others can all be unified under the umbrella of geometry built from distance measurement, where "lines" are defined to mean shortest paths (geodesics). Many statements about the geometry of points and such "lines" are equally true in all those geometries provided lines are defined that way, and the theory can be readily extended to higher dimensions.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.