Time-lapse microscopy is time-lapse photography applied to microscopy.
Microscope image sequences are recorded and then viewed at a greater speed to
give an accelerated view of the microscopic process.
Before the introduction of the video tape recorder in the 1960s, time-lapse microscopy recordings
were made on photographic film.
During this period, time-lapse microscopy was referred to as microcinematography.
With the increasing use of video recorders, the term time-lapse video microscopy was gradually adopted.
Today, the term video is increasingly dropped, reflecting that a digital still camera
is used to record the individual image frames, instead of a video recorder.
Time-lapse microscopy can be used to observe any microscopic object over time. However, its main use is within cell biology to observe artificially cultured cells. Depending on the cell culture, different microscopy techniques can be applied to enhance characteristics of the cells as most cells are transparent.
To enhance observations further, cells have therefore traditionally been stained before observation. Unfortunately, the staining process kills the cells. The development of less destructive staining methods and methods to observe unstained cells has led to that cell biologists increasingly observe living cells. This is known as live cell imaging. A few tools have been developed to identify and analyze single cells during live cell imaging.
Time-lapse microscopy is the method that extends live cell imaging from a single observation in time to the observation of cellular dynamics over long periods of time. Time-lapse microscopy is primarily used in research, but is clinically used in IVF clinics as studies has proven it to increase pregnancy rates, lower abortion rates and predict aneuploidy
Modern approaches are further extending time-lapse microscopy observations beyond making movies of cellular dynamics.
Traditionally, cells have been observed in a microscope and measured in a cytometer.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Give students a feel for some of the approaches pursued to understand mechanisms underlying cell division processes, primarily in C. elegans embryos but also in other systems, including human cells in
Live-cell imaging is the study of living cells using time-lapse microscopy. It is used by scientists to obtain a better understanding of biological function through the study of cellular dynamics. Live-cell imaging was pioneered in the first decade of the 21st century. One of the first time-lapse microcinematographic films of cells ever made was made by Julius Ries, showing the fertilization and development of the sea urchin egg. Since then, several microscopy methods have been developed to study living cells in greater detail with less effort.
Mycobacterium Tuberculosis is a highly effective pathogen infecting nearly a third of the world's population. An M. tuberculosis infection starts when droplets containing bacteria enter an individual's lungs. The first host cells to contact the bacteria ar ...
The cellular protein levels are determined by protein synthesis and turnover rates. Two processes are involved in the proteome's turnover in proliferating cells: protein degradation and dilution. In theory, maintaining the cellular proteome concentration, ...
Microbial communities perform essential ecosystem functions such as the remineralization of organic carbon that exists as biopolymers. The first step in mineralization is performed by biopolymer degraders, which harbor enzymes that can break down polymers ...