Carbon fiber-reinforced polymers (American English), carbon-fiber-reinforced polymers (Commonwealth English), carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic (CFRP, CRP, CFRTP), also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications. The binding polymer is often a thermoset resin such as epoxy, but other thermoset or thermoplastic polymers, such as polyester, vinyl ester, or nylon, are sometimes used. The properties of the final CFRP product can be affected by the type of additives introduced to the binding matrix (resin). The most common additive is silica, but other additives such as rubber and carbon nanotubes can be used. Carbon fiber is sometimes referred to as graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common, as it clashes with glass-(fiber)-reinforced polymer). CFRP are composite materials. In this case the composite consists of two parts: a matrix and a reinforcement. In CFRP the reinforcement is carbon fiber, which provides its strength. The matrix is usually a thermosetting plastic, such as polyester resin, to bind the reinforcements together. Because CFRPs consist of two distinct elements, the material properties depend on these two elements. Reinforcement gives CFRPs their strength and rigidity, measured by stress and elastic modulus respectively. Unlike isotropic materials like steel and aluminum, CFRPs have directional strength properties. The properties of a CFRP depend on the layouts of the carbon fiber and the proportion of the carbon fibers relative to the polymer.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
CIVIL-443: Advanced composites in engineering structures
1.Introduce topics in properties, processing, mechanical behavior, characterization, analysis and structural design of Fiber Reinforced Composites 2.Help students develop their research skills through
PENS-308: TRC LC3 Research Platform Fribourg
The UE TRC-LC3 Research Platform Fribourg will develop prototypes of structural elements in textile reinforced concrete (TRC) and Limestone Calcined Clay Cement (LC3) concrete that allow the continuat
MSE-440: Composites technology
The latest developments in processing and the novel generations of organic composites are discussed. Nanocomposites, adaptive composites and biocomposites are presented. Product development, cost anal
Show more
Related lectures (91)
Recycling of Composites
Explores the recycling process of composites, including fiber recovery, environmental impact, and potential applications of recycled fibers.
Formula Student Car Cockpit Design
Explores the design process of a Formula Student car cockpit, highlighting innovations and challenges faced during production.
Swiss Solar Boat: Cockpit Improvements
Showcases the Swiss Solar Boat project's cockpit enhancements for better pilot-boat interaction and improved racing performance.
Show more
Related publications (903)

Self-catalysed frontal polymerisation enables fast and low-energy processing of fibre reinforced polymer composites

Véronique Michaud, Jacobus Gerardus Rudolph Staal, Baris Çaglar

Frontal polymerisation has the potential to bring unprecedented reductions in energy demand and process time to produce fibre reinforced polymer composites. Production of epoxy-based fibre reinforced polymer parts with high fibre volume content, commonly e ...
2024

Two-dimensional quasi-static delamination in composite laminates under Mode-I and Mode-II conditions

Congzhe Wang

Fiber-polymer composites consist of a polymer matrix and reinforcing fibers made of various materials. These composites exhibit exceptional properties, such as a high strength-to-weight ratio and excellent corrosion resistance, which has led to their incre ...
EPFL2024

On the influence of flow-front orientation on stringer stiffened composite panels in water impacts

Véronique Michaud

Water impacts form the critical load case for high-performance carbon fibre reinforced polymer (CFRP) racing craft. Such events produce a peaked, non-uniform pressure distribution that travels along a hull panel as it is immersed. Current design standards ...
2024
Show more
Related concepts (23)
Pre-preg
Pre-preg is a composite material made from "pre-impregnated" fibers and a partially cured polymer matrix, such as epoxy or phenolic resin, or even thermoplastic mixed with liquid rubbers or resins. The fibers often take the form of a weave and the matrix is used to bond them together and to other components during manufacture. The thermoset matrix is only partially cured to allow easy handling; this B-Stage material requires cold storage to prevent complete curing.
Basalt fiber
Basalt fibers are produced from basalt rocks by melting them and converting the melt into fibers. Basalts are rocks of igneous origin. The main energy consumption for the preparation of basalt raw materials to produce of fibers is made in natural conditions. Basalt continuous, staple and super-thin fibers are produced and used. Basalt continuous fibers (BCF) are used for the production of reinforcing materials and composite products, fabrics and non-woven materials. Basalt staple fibers - for the production of thermal insulation materials.
Composite material
A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.