Summary
Carbon fiber-reinforced polymers (American English), carbon-fiber-reinforced polymers (Commonwealth English), carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic (CFRP, CRP, CFRTP), also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications. The binding polymer is often a thermoset resin such as epoxy, but other thermoset or thermoplastic polymers, such as polyester, vinyl ester, or nylon, are sometimes used. The properties of the final CFRP product can be affected by the type of additives introduced to the binding matrix (resin). The most common additive is silica, but other additives such as rubber and carbon nanotubes can be used. Carbon fiber is sometimes referred to as graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common, as it clashes with glass-(fiber)-reinforced polymer). CFRP are composite materials. In this case the composite consists of two parts: a matrix and a reinforcement. In CFRP the reinforcement is carbon fiber, which provides its strength. The matrix is usually a thermosetting plastic, such as polyester resin, to bind the reinforcements together. Because CFRPs consist of two distinct elements, the material properties depend on these two elements. Reinforcement gives CFRPs their strength and rigidity, measured by stress and elastic modulus respectively. Unlike isotropic materials like steel and aluminum, CFRPs have directional strength properties. The properties of a CFRP depend on the layouts of the carbon fiber and the proportion of the carbon fibers relative to the polymer.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
CIVIL-443: Advanced composites in engineering structures
1.Introduce topics in properties, processing, mechanical behavior, characterization, analysis and structural design of Fiber Reinforced Composites 2.Help students develop their research skills through
PENS-308: Argamassa armada
The UE Argamassa Armada will develop prototypes of structural elements in textile reinforced concrete (TRC) for the context of social housing in Nicaragua, based on the knowledge of the TRC Prototype
MSE-440: Composites technology
The latest developments in processing and the novel generations of organic composites are discussed. Nanocomposites, adaptive composites and biocomposites are presented. Product development, cost anal
Show more
Related lectures (99)
Recycling of Composites
Explores the recycling process of composites, including fiber recovery, environmental impact, and potential applications of recycled fibers.
Formula Student Car Cockpit Design
Explores the design process of a Formula Student car cockpit, highlighting innovations and challenges faced during production.
Monocoque Mechanical Integration: Challenges and Solutions
Discusses the advantages and challenges of transitioning to a carbon fiber monocoque for electric race cars, emphasizing the importance of teamwork.
Show more
Related concepts (23)
Pre-preg
Pre-preg is a composite material made from "pre-impregnated" fibers and a partially cured polymer matrix, such as epoxy or phenolic resin, or even thermoplastic mixed with liquid rubbers or resins. The fibers often take the form of a weave and the matrix is used to bond them together and to other components during manufacture. The thermoset matrix is only partially cured to allow easy handling; this B-Stage material requires cold storage to prevent complete curing.
Basalt fiber
Basalt fibers are produced from basalt rocks by melting them and converting the melt into fibers. Basalts are rocks of igneous origin. The main energy consumption for the preparation of basalt raw materials to produce of fibers is made in natural conditions. Basalt continuous, staple and super-thin fibers are produced and used. Basalt continuous fibers (BCF) are used for the production of reinforcing materials and composite products, fabrics and non-woven materials. Basalt staple fibers - for the production of thermal insulation materials.
Composite material
A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions.
Show more