Basalt fibers are produced from basalt rocks by melting them and converting the melt into fibers.
Basalts are rocks of igneous origin. The main energy consumption for the preparation of basalt raw materials to produce of fibers is made in natural conditions.
Basalt continuous, staple and super-thin fibers are produced and used.
Basalt continuous fibers (BCF) are used for the production of reinforcing materials and composite products, fabrics and non-woven materials. Basalt staple fibers - for the production of thermal insulation materials.
Basalt superthin fibers (BSTF) - for the production of high quality heat and sound insulating and fireproof materials.
The technology of production of basalt continuous fiber (BCF) is a one-stage process: melting, homogenization of basalt and extraction of fibers. Basalt is heated only once. Further processing of BCF into materials is carried out using "cold technologies" with low energy costs.
Basalt fiber is made from a single material, crushed basalt, from a carefully chosen quarry source. Basalt of high acidity (over 46% silica content) and low iron content is considered desirable for fiber production. Unlike with other composites, such as glass fiber, essentially no materials are added during its production. The basalt is simply washed and then melted.
The manufacture of basalt fiber requires the melting of the crushed and washed basalt rock at about . The molten rock is then extruded through small nozzles to produce continuous filaments of basalt fiber.
The basalt fibers typically have a filament diameter of between 10 and 20 μm which is far enough above the respiratory limit of 5 μm to make basalt fiber a suitable replacement for asbestos. They also have a high elastic modulus, resulting in high specific strength—three times that of steel. Thin fiber is usually used for textile applications mainly for production of woven fabric. Thicker fiber is used in filament winding, for example, for production of compressed natural gas (CNG) cylinders or pipes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The UE Argamassa Armada will develop prototypes of structural elements in textile reinforced concrete (TRC) for the context of social housing in Nicaragua, based on the knowledge of the TRC Prototype
Students understand what life cycle engineering is and apply this methodology to adapt and improve the durability of polymer-based products. They understand how to recycle these materials and are able
The latest developments in processing and the novel generations of organic composites are discussed. Nanocomposites, adaptive composites and biocomposites are presented. Product development, cost anal
Carbon fiber-reinforced polymers (American English), carbon-fiber-reinforced polymers (Commonwealth English), carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic (CFRP, CRP, CFRTP), also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.
Carbon fibers or carbon fibres (alternatively CF, graphite fiber or graphite fibre) are fibers about in diameter and composed mostly of carbon atoms. Carbon fibers have several advantages: high stiffness, high tensile strength, high strength to weight ratio, high chemical resistance, high-temperature tolerance, and low thermal expansion. These properties have made carbon fiber very popular in aerospace, civil engineering, military, motorsports, and other competition sports.
Fibre-reinforced plastic (FRP; also called fibre-reinforced polymer, or in American English fiber) is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass (in fibreglass), carbon (in carbon-fibre-reinforced polymer), aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.
Existing standards for delamination tests on composite materials typically employ one-dimensional (1D) beam specimens. However, such specimens may not represent real delamination scenarios in composite structures, where cracks tend to propagate in two dime ...
Bond between reinforcing bars and concrete has been the focus of extensive research over the last century. This is well-justified as the functioning of reinforced concrete intimately depends on the interaction between rebar and concrete, as for example cra ...
EPFL2024
, , , ,
Dielectric Elastomer Actuators (DEAs) have emerged as versatile and promising devices for a multitude of applications, including soft robotics, haptic interfaces, and artificial muscles. DEAs are an interesting soft actuator technology due to their high en ...
Society of Photo-Optical Instrumentation Engineers (SPIE)2024