Summary
In probability theory and statistics, a unit root is a feature of some stochastic processes (such as random walks) that can cause problems in statistical inference involving time series models. A linear stochastic process has a unit root if 1 is a root of the process's characteristic equation. Such a process is non-stationary but does not always have a trend. If the other roots of the characteristic equation lie inside the unit circle—that is, have a modulus (absolute value) less than one—then the first difference of the process will be stationary; otherwise, the process will need to be differenced multiple times to become stationary. If there are d unit roots, the process will have to be differenced d times in order to make it stationary. Due to this characteristic, unit root processes are also called difference stationary. Unit root processes may sometimes be confused with trend-stationary processes; while they share many properties, they are different in many aspects. It is possible for a time series to be non-stationary, yet have no unit root and be trend-stationary. In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent impact on the mean (i.e. no convergence over time). If a root of the process's characteristic equation is larger than 1, then it is called an explosive process, even though such processes are sometimes inaccurately called unit roots processes. The presence of a unit root can be tested using a unit root test. Consider a discrete-time stochastic process , and suppose that it can be written as an autoregressive process of order p: Here, is a serially uncorrelated, zero-mean stochastic process with constant variance . For convenience, assume .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (9)
MATH-342: Time series
A first course in statistical time series analysis and applications.
FIN-403: Econometrics
The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
FIN-616: Financial Econometrics II (2020 -2024)
This course has 3 parts
  • We understand how to use moment based estimations to obtain the parameters for explicit or implicit models.
  • We learn how to estimate latent parameters in a time series cont
Show more
Related lectures (37)
Univariate time series: Analysis & Modeling
Covers the analysis and modeling of univariate time series, focusing on stationarity, ARMA processes, and forecasting.
Univariate Time Series Analysis
Explores univariate time series analysis, covering stationarity, ARMA processes, model selection, and unit root tests.
Count Data Models & Univariate Time Series Analysis
Covers count data models and Poisson regression, then transitions to univariate time series analysis for forecasting economic variables.
Show more
Related publications (32)

Comparison of Three Imputation Methods for Groundwater Level Timeseries

Andrea Rinaldo

This study compares three imputation methods applied to the field observations of hydraulic head in subsurface hydrology. Hydrogeological studies that analyze the timeseries of groundwater elevations often face issues with missing data that may mislead bot ...
MDPI2023

Optimizing Sales Forecasting, Inventory, Pricing and Sourcing Decisions

Yara Kayyali El Alem

In this thesis we address various factors that contribute both theoretically and practically to mitigating supply demand mismatches. The thesis is composed of three chapters, where each chapter is an independent scientific paper. In the first paper, we dev ...
EPFL2023

SPHARMA approximations for stationary functional time series on the sphere

Alessia Caponera

In this paper, we focus on isotropic and stationary sphere-cross-time random fields. We first introduce the class of spherical functional autoregressive-moving average processes (SPHARMA), which extend in a natural way the spherical functional autoregressi ...
2021
Show more
Related concepts (6)
Autoregressive integrated moving average
In statistics and econometrics, and in particular in time series analysis, an autoregressive integrated moving average (ARIMA) model is a generalization of an autoregressive moving average (ARMA) model. To better comprehend the data or to forecast upcoming series points, both of these models are fitted to time series data. ARIMA models are applied in some cases where data show evidence of non-stationarity in the sense of mean (but not variance/autocovariance), where an initial differencing step (corresponding to the "integrated" part of the model) can be applied one or more times to eliminate the non-stationarity of the mean function (i.
Autoregressive model
In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (an imperfectly predictable term); thus the model is in the form of a stochastic difference equation (or recurrence relation which should not be confused with differential equation).
Autoregressive–moving-average model
In the statistical analysis of time series, autoregressive–moving-average (ARMA) models provide a parsimonious description of a (weakly) stationary stochastic process in terms of two polynomials, one for the autoregression (AR) and the second for the moving average (MA). The general ARMA model was described in the 1951 thesis of Peter Whittle, Hypothesis testing in time series analysis, and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.