Multilinear algebra is a branch of mathematics that expands upon the principles of linear algebra. It extends the foundational theory of vector spaces by introducing the concepts of p-vectors and multivectors using Grassmann algebras.
In a vector space of dimension n, the focus is primarily on using vectors. However, Hermann Grassmann and others emphasized the importance of considering the structures of pairs, triplets, and general multi-vectors, which offer a more comprehensive perspective. With multiple combinatorial possibilities, the space of multi-vectors expands to 2n dimensions. The abstract formulation of the determinant is one direct application of multilinear algebra. Additionally, it finds practical use in studying the mechanical response of materials to stress and strain, involving various moduli of elasticity. The term "tensor" emerged to describe elements within the multi-linear space due to its added structure. This additional structure has made multilinear algebra significant in various fields of higher mathematics. However, despite Grassmann's early work in 1844 with his Ausdehnungslehre, which was also republished in 1862, it took time for the subject to gain acceptance, as ordinary linear algebra posed enough challenges on its own.
The concepts of multilinear algebra find applications in certain studies of multivariate calculus and manifolds, particularly in relation to the Jacobian matrix. Infinitesimal differentials encountered in single-variable calculus are transformed into differential forms in multivariate calculus, and their manipulation is carried out using exterior algebra.
Following Grassmann, developments in multilinear algebra were made by Victor Schlegel in 1872 with the publication of the first part of his System der Raumlehre and by Elwin Bruno Christoffel. Notably, significant advancements came through the work of Gregorio Ricci-Curbastro and Tullio Levi-Civita, particularly in the form of absolute differential calculus within multilinear algebra.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
Students learn digital signal processing theory, including discrete time, Fourier analysis, filter design, adaptive filtering, sampling, interpolation and quantization; they are introduced to image pr
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. If a scalar is considered a degree-zero quantity, and a vector is a degree-one quantity, then a bivector can be thought of as being of degree two. Bivectors have applications in many areas of mathematics and physics. They are related to complex numbers in two dimensions and to both pseudovectors and quaternions in three dimensions.
In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra. There are numerous ways to multiply two Euclidean vectors. The dot product takes in two vectors and returns a scalar, while the cross product returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics, and engineering. The dyadic product takes in two vectors and returns a second order tensor called a dyadic in this context.
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors and , denoted by is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors.
Ulam asked whether all Lie groups can be represented faithfully on a countable set. We establish a reduction of Ulam's problem to the case of simple Lie groups. In particular, we solve the problem for all solvable Lie groups and more generally Lie groups w ...
Witness encryption is a cryptographic primitive which encrypts a message under an instance of an NP language and decrypts the ciphertext using a witness associated with that instance. In the current state of the art, most of the witness encryption construc ...
With the increase in massive digitized datasets of cultural artefacts, social and cultural scientists have an unprecedented opportunity for the discovery and expansion of cultural theory. The WikiArt dataset is one such example, with over 250,000 high qual ...