BivecteurEn algèbre, le terme de bivecteur désigne un tenseur antisymétrique d'ordre 2, c'est-à-dire une quantité X pouvant s'écrire où les quantités ω sont des formes linéaires et le signe désigne le produit extérieur. Un bivecteur peut être vu comme une application linéaire agissant sur les vecteurs et les transformant en formes linéaires. Les coefficients X_ab peuvent être vus comme formant une matrice antisymétrique. Les bivecteurs sont abondamment utilisés en relativité générale, où plusieurs tenseurs peuvent être reliés à des bivecteurs.
Produit dyadiqueEn mathématiques, et plus précisément en algèbre multilinéaire, le produit dyadique de deux vecteurs, et , chacun ayant la même dimension, est le produit tensoriel de ces vecteurs, lequel est un tenseur d'ordre deux et de rang un. Si et sont deux vecteurs d'un espace vectoriel E de dimension finie n, muni d'une base donnée , les coordonnées du produit dyadique dans la base correspondante du produit tensoriel sont données par où , et , et alors Le produit dyadique peut être simplement représenté par la matrice carrée obtenue en multipliant en tant que vecteur colonne par en tant que vecteur ligne.
Algèbre extérieureEn mathématiques, et plus précisément en algèbre et en analyse vectorielle, l'algèbre extérieure d'un espace vectoriel E est une algèbre associative graduée, notée . La multiplication entre deux éléments a et b est appelée le produit extérieur et est notée . Le carré de tout élément de E est zéro (), on dit que la multiplication est alternée, ce qui entraîne que pour deux éléments de E : (la loi est « anti-commutative »). L'algèbre extérieure est aussi appelée algèbre de Grassmann nommée ainsi en l'honneur de Hermann Grassmann.
Application multilinéaireEn algèbre linéaire, une application multilinéaire est une application à plusieurs variables vectorielles et à valeurs vectorielles qui est linéaire en chaque variable. Une application multilinéaire à valeurs scalaires est appelée forme multilinéaire. Une application multilinéaire à deux variables vectorielles est dite bilinéaire. Quelques exemples classiques : le produit scalaire est une forme bilinéaire symétrique ; le déterminant est une forme multilinéaire antisymétrique des colonnes (ou lignes) d'une matrice carrée.
Hermann Günther GrassmannHermann Günther Grassmann (né le à Stettin et mort le dans la même ville) est un mathématicien et indianiste prussien. Polymathe, il est connu de ses contemporains en tant que linguiste. Physicien, néo-humaniste, érudit mais aussi éditeur, Hermann Grassmann est avec Niels Abel, Évariste Galois et Georg Cantor l’un des grands mathématiciens « malheureux » du . Selon le mot de Albert C. Lewis : Il est considéré aujourd'hui comme le fondateur du calcul tensoriel et de la théorie des espaces vectoriels.
Tenseur symétriqueUn tenseur d'ordre 2 est dit symétrique si la forme bilinéaire associée est symétrique. Un tenseur d'ordre 2 étant défini par rapport à un certain espace vectoriel, on peut y choisir des vecteurs de base et le tenseur est alors représenté par une matrice de composantes . Une définition équivalente à la précédente consiste à dire que la matrice est symétrique, c'est-à-dire que : pour tout couple d'indices i et j, car cette propriété reste inchangée si l'on change de base.
Symbole de Levi-CivitaEn mathématiques, le symbole de Levi-Civita, noté ε (lettre grecque epsilon), est un objet antisymétrique d'ordre 3 qui peut être exprimé à partir du symbole de Kronecker : Ainsi, ne peut prendre que trois valeurs : –1, 0 ou 1. En dimension 3, on peut figurer le symbole de Levi-Civita comme suit : On remarque que si , et , alors représente une permutation et le symbole de Levi-Civita correspondant est sa signature.
Tenseur (mathématiques)Les tenseurs sont des objets mathématiques issus de l'algèbre multilinéaire permettant de généraliser les scalaires et les vecteurs. On les rencontre notamment en analyse vectorielle et en géométrie différentielle fréquemment utilisés au sein de champs de tenseurs. Ils sont aussi utilisés en mécanique des milieux continus. Le présent article ne se consacre qu'aux tenseurs dans des espaces vectoriels de dimension finie, bien que des généralisations en dimension infinie et même pour des modules existent.
MultivecteurUn multivecteur est le résultat d'un produit défini pour les éléments d'un espace vectoriel V. Un espace vectoriel muni d'une opération linéaire de produit entre ses éléments est une algèbre; on peut compter parmi les exemples d'algèbres sur un corps celles des matrices et des vecteurs.. L'algèbre des multivecteurs est construite grâce au produit extérieur ∧ et est liée à l’algèbre extérieure des formes différentiellesH. Flanders, Differential Forms with Applications to the Physical Sciences, Academic Press, New York, NY, 1963.
Calcul tensorielEn physique théorique, des équations différentielles, posées en termes de champs tensoriels, sont une manière très générale pour exprimer les relations à la fois géométriques par nature et liées au calcul différentiel. Pour formuler de telles équations, il faut connaître la dérivée covariante. Cela permet d'exprimer la variation d'un champ tensoriel le long d'un champ vectoriel. La notion d'origine du calcul différentiel absolu, plus tard renommé calcul tensoriel, amena à l'isolation du concept géométrique de connexion.