Summary
Schaffer collaterals are axon collaterals given off by CA3 pyramidal cells in the hippocampus. These collaterals project to area CA1 of the hippocampus and are an integral part of memory formation and the emotional network of the Papez circuit, and of the hippocampal trisynaptic loop. It is one of the most studied synapses in the world and named after the Hungarian anatomist-neurologist Károly Schaffer. As a part of the hippocampal structures, Schaffer collaterals develop the limbic system, which plays a critical role in the aspects of learning and memory. The signals of information from the contralateral CA3 region leave via the Schaffer collateral pathways for the CA1 pyramidal neurons. Mature synapses contain fewer Schaffer collateral branches than those synapses that are not fully developed. Many scientists try to use the Schaffer collateral synapse as a sample synapse, a typical excitatory glutamatergic synapse in the cortex that has very well been studied in order to try to identify the rules of both the patterns of stimulation in electrical rules and the chemical mechanisms by which synapses get persistently stronger and which synapses get persistently weaker as well and to develop medication and treatment to cure the chronic diseases, such as dementia and Alzheimer's disease. Moreover, they believe that studying the Schaffer collateral can provide a whole range of understanding how Schaffer collaterals allow us to intervene with drug-treatments and with electrical-stimulation so that the quality of human experience can be improved. "Schaffer collateral is the conductor of the orchestra, but not the actual instrument that plays the music" - Dr. Patrick K. Stanton . The functional hippocampus stores long-term memories through synaptic plasticity in terms of storing information. The hippocampus in communication with the neocortex mediates memory degradation. Plastic changes occurring in the hippocampus are involved in directing the process of memory storage.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.