Piezoelectricity (ˌpiːzoʊ-,_ˌpiːtsoʊ-,_paɪˌiːzoʊ-, piˌeɪzoʊ-,_piˌeɪtsoʊ-) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived (an ancient source of electric current). The piezoelectric effect results from the linear electromechanical interaction between the mechanical and electrical states in crystalline materials with no inversion symmetry. The piezoelectric effect is a reversible process: materials exhibiting the piezoelectric effect also exhibit the reverse piezoelectric effect, the internal generation of a mechanical strain resulting from an applied electric field. For example, lead zirconate titanate crystals will generate measurable piezoelectricity when their static structure is deformed by about 0.1% of the original dimension. Conversely, those same crystals will change about 0.1% of their static dimension when an external electric field is applied. The inverse piezoelectric effect is used in the production of ultrasound waves. French physicists Jacques and Pierre Curie discovered piezoelectricity in 1880. The piezoelectric effect has been exploited in many useful applications, including the production and detection of sound, piezoelectric inkjet printing, generation of high voltage electricity, as a clock generator in electronic devices, in microbalances, to drive an ultrasonic nozzle, and in ultrafine focusing of optical assemblies. It forms the basis for scanning probe microscopes that resolve images at the scale of atoms. It is used in the pickups of some electronically amplified guitars and as triggers in most modern electronic drums. The piezoelectric effect also finds everyday uses, such as generating sparks to ignite gas cooking and heating devices, torches, and cigarette lighters.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
MSE-351: Surface analysis
The course treats the main surface analysis methods for the characterization of surfaces, interfaces and thin films. It discusses how these methods can be applied to gain specific knowledge about stru
MICRO-330: Sensors
Principes physiques et électronique utilisés dans les capteurs. Applications des capteurs.
MICRO-534: Advanced MEMS & microsystems
In depth analysis of the operation principles and technology of advanced micro- and nanosystems. Familiarisation to their implementation into products and their applications.
Show more
Related lectures (46)
Piezoelectric Sensors: Operating Modes
Explores the operating modes of piezoelectric sensors and sensitivity calculations.
Piezoelectric Effect: Fundamentals
Explores the piezoelectric effect, materials, sensor sensitivity, geometry, and configurations.
Capacitive MEMS Sensors: Working Principles
Explains the working principles of capacitive MEMS sensors, differential capacitors, MEMS microphones, and the impact of MEMS technology on consumer products.
Show more
Related publications (840)

Piezoelectric Properties of BiFeO3 Exposed to High Temperatures

Dragan Damjanovic, Xiaolong Li

BiFeO3 is a ferroelectric with a Curie temperature of 830 C-degrees, however, its piezoelectric performance at high temperature remains unclear. The current work reveals a disappearance/recovery of piezoelectricity in BiFeO3 at elevated temperature and upo ...
Weinheim2024

Piezoelectric and elastic properties of Al0.60Sc0.40N thin films deposited on patterned metal electrodes

Luis Guillermo Villanueva Torrijo, Silvan Stettler, Marco Liffredo, Nan Xu, Federico Peretti

Sc-doped aluminum nitride (AlScN) allows for piezoelectric devices with large electromechanical coupling and the benefits increase with larger Sc doping in the film. However, with a larger Sc concentration, the process window narrows, and it is necessary t ...
2024

Pyroelectricity in poled all-organic polar polynorbornene/polydimethylsiloxane-based stretchable electrets

Francis Owusu

Pyroelectricity in a recently developed all-organic composite electret with a polar polynorbornene-based filler and polydimethylsiloxane (PDMS) matrix has been studied with the help of thermal and dielectric techniques. Measurement of the pyroelectric p co ...
Royal Soc Chemistry2024
Show more
Related concepts (37)
Transducer
A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities (energy, force, torque, light, motion, position, etc.). The process of converting one form of energy to another is known as transduction.
Sonar
Sonar (sound navigation and ranging or sonic navigation and ranging) is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, measure distances (ranging), communicate with or detect objects on or under the surface of the water, such as other vessels. "Sonar" can refer to one of two types of technology: passive sonar means listening for the sound made by vessels; active sonar means emitting pulses of sounds and listening for echoes.
Capacitor
A capacitor is a device that stores electrical energy in an electric field by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals. The effect of a capacitor is known as capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed to add capacitance to a circuit.
Show more
Related MOOCs (11)
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Conversion electromécanique II
Principes de fonctionnement, construction, calcul et applications des moteurs electriques.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.