In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series
is a Puiseux series in the indeterminate x. Puiseux series were first introduced by Isaac Newton in 1676 and rediscovered by Victor Puiseux in 1850.
The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominator n, a Puiseux series becomes a Laurent series in an nth root of the indeterminate. For example, the example above is a Laurent series in Because a complex number has n nth roots, a convergent Puiseux series typically defines n functions in a neighborhood of 0.
Puiseux's theorem, sometimes also called the Newton–Puiseux theorem, asserts that, given a polynomial equation with complex coefficients, its solutions in y, viewed as functions of x, may be expanded as Puiseux series in x that are convergent in some neighbourhood of 0. In other words, every branch of an algebraic curve may be locally described by a Puiseux series in x (or in x − x_0 when considering branches above a neighborhood of x_0 ≠ 0).
Using modern terminology, Puiseux's theorem asserts that the set of Puiseux series over an algebraically closed field of characteristic 0 is itself an algebraically closed field, called the field of Puiseux series. It is the algebraic closure of the field of formal Laurent series, which itself is the field of fractions of the ring of formal power series.
If K is a field (such as the complex numbers), a Puiseux series with coefficients in K is an expression of the form
where is a positive integer and is an integer. In other words, Puiseux series differ from Laurent series in that they allow for fractional exponents of the indeterminate, as long as these fractional exponents have bounded denominator (here n). Just as with Laurent series, Puiseux series allow for negative exponents of the indeterminate as long as these negative exponents are bounded below (here by ).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
In mathematics, a Padé approximant is the "best" approximation of a function near a specific point by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating. The technique was developed around 1890 by Henri Padé, but goes back to Georg Frobenius, who introduced the idea and investigated the features of rational approximations of power series.
In mathematics, the Newton polygon is a tool for understanding the behaviour of polynomials over local fields, or more generally, over ultrametric fields. In the original case, the local field of interest was essentially the field of formal Laurent series in the indeterminate X, i.e. the field of fractions of the formal power series ring , over , where was the real number or complex number field. This is still of considerable utility with respect to Puiseux expansions.
In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials with rational coefficients. This criterion is not applicable to all polynomials with integer coefficients that are irreducible over the rational numbers, but it does allow in certain important cases for irreducibility to be proved with very little effort.
Explores the method of undetermined coefficients for solving non-homogeneous linear differential equations with constant coefficients.
Explores advanced integration techniques such as change of variable and integration by parts to simplify complex integrals and solve challenging integration problems.
Explores dominant balance analysis in solving the quintic polynomial, revealing insights into root behavior and the importance of symbolic expressions.
We consider rank-1 lattices for integration and reconstruction of functions with series expansion supported on a finite index set. We explore the connection between the periodic Fourier space and the non-periodic cosine space and Chebyshev space, via tent ...
Many engineering fields rely on frequency-domain dynamical systems for the mathematical modeling of physical (electrical/mechanical/etc.) structures. With the growing need for more accurate and reliable results, the computational burden incurred by frequen ...
EPFL2021
We consider the nonlinear Korteweg-de Vries (KdV) equation in a bounded interval equipped with the Dirichlet boundary condition and the Neumann boundary condition on the right. It is known that there is a set of critical lengths for which the solutions of ...