En mathématiques, et plus précisément en analyse complexe, l'approximant de Padé est une méthode d'approximation d'une fonction analytique par une fonction rationnelle. En ce sens, elle est un peu analogue à un développement limité qui approche la fonction selon les mêmes critères à l'aide d'un polynôme.
De même que les développements limités forment une suite appelée série entière, convergeant vers la fonction initiale, les approximants de Padé apparaissent comme les réduites de diverses fractions continues (généralisées) dont la limite est aussi la fonction initiale. En ce sens, ces approximants font partie de la vaste théorie des fractions continues.
En analyse complexe, les approximants offrent un développement dont le domaine de convergence est parfois plus large que celui d'une série entière. Ils permettent ainsi de prolonger des fonctions analytiques et d'étudier certains aspects de la question des séries divergentes. En théorie analytique des nombres, l'approximant permet de mettre en évidence la nature d'un nombre ou d'une fonction arithmétique comme celle de la fonction zêta de Riemann. Dans le domaine du calcul numérique, l'approximant joue un rôle, par exemple, pour évaluer le comportement d'une solution d'un système dynamique à l'aide de la théorie des perturbations.
Le développement d'une fonction en fraction continue est utilisé pour la première fois par Leonhard Euler, pour démontrer l'irrationalité du nombre e. Une stratégie plus élaborée permet à Jean-Henri Lambert de montrer celle de π. Cette notion est développée plus systématiquement par Henri Padé et érigée en théorie à part entière.
Il est utile d'approcher une fonction donnée par une suite de fonctions aisément calculables. Cette démarche est à l'origine de la théorie des séries entières consistant à approcher de plus en plus précisément une fonction analytique à l'aide de la suite de ses développements limités. Les développements limités, puis les séries entières offrent de nombreuses possibilités comme le calcul d'une limite ou la résolution d'une équation différentielle.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, les séries de Puiseux sont une généralisation des séries formelles, introduites pour la première fois par Isaac Newton en 1676 et redécouvertes par Victor Puiseux en 1850, qui permet à l'exposant de l'indéterminée d'être négatif ou fractionnel (tout en étant, pour une série donnée, borné inférieurement et de dénominateur borné). Une série de Puiseux d'indéterminée T est une série formelle de Laurent en T (où n est un entier strictement positif) ; elle peut donc s'écrire : avec k entier relatif.
Cet article traite du développement en série de Laurent en analyse complexe. Pour la définition et les propriétés des séries de Laurent formelles en algèbre, veuillez consulter l'article Série formelle. En analyse complexe, la série de Laurent (aussi appelée développement de Laurent) d'une fonction holomorphe f est une manière de représenter f au voisinage d'une singularité, ou plus généralement, autour d'un « trou » de son domaine de définition. On représente f comme somme d'une série de puissances (d'exposants positifs ou négatifs) de la variable complexe.
En mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0. Par contraposition, cela fournit de nombreux exemples de séries divergentes, par exemple celle dont tous les termes valent 1.
The main theme in Diopahntine approximation is to approximate a real number by a rational number with a certain denominator bound. The course covers the case of one real number, that is classical and
The introduction to asymptotic analysis provides the basis for constructing many simplified analytical models in mechanics and for testing computations in limiting cases.
In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...
Many engineering fields rely on frequency-domain dynamical systems for the mathematical modeling of physical (electrical/mechanical/etc.) structures. With the growing need for more accurate and reliable results, the computational burden incurred by frequen ...
In this work, we show how the knowledge of the first few terms of the Euler-Heisenberg Lagrangian's weak-field expansion in a magnetic field background is enough to reconstruct the pair-production rate in a strong electric field background. To this end, we ...