In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series
is a Puiseux series in the indeterminate x. Puiseux series were first introduced by Isaac Newton in 1676 and rediscovered by Victor Puiseux in 1850.
The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominator n, a Puiseux series becomes a Laurent series in an nth root of the indeterminate. For example, the example above is a Laurent series in Because a complex number has n nth roots, a convergent Puiseux series typically defines n functions in a neighborhood of 0.
Puiseux's theorem, sometimes also called the Newton–Puiseux theorem, asserts that, given a polynomial equation with complex coefficients, its solutions in y, viewed as functions of x, may be expanded as Puiseux series in x that are convergent in some neighbourhood of 0. In other words, every branch of an algebraic curve may be locally described by a Puiseux series in x (or in x − x_0 when considering branches above a neighborhood of x_0 ≠ 0).
Using modern terminology, Puiseux's theorem asserts that the set of Puiseux series over an algebraically closed field of characteristic 0 is itself an algebraically closed field, called the field of Puiseux series. It is the algebraic closure of the field of formal Laurent series, which itself is the field of fractions of the ring of formal power series.
If K is a field (such as the complex numbers), a Puiseux series with coefficients in K is an expression of the form
where is a positive integer and is an integer. In other words, Puiseux series differ from Laurent series in that they allow for fractional exponents of the indeterminate, as long as these fractional exponents have bounded denominator (here n). Just as with Laurent series, Puiseux series allow for negative exponents of the indeterminate as long as these negative exponents are bounded below (here by ).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
En mathématiques, et plus précisément en analyse complexe, l'approximant de Padé est une méthode d'approximation d'une fonction analytique par une fonction rationnelle. En ce sens, elle est un peu analogue à un développement limité qui approche la fonction selon les mêmes critères à l'aide d'un polynôme. De même que les développements limités forment une suite appelée série entière, convergeant vers la fonction initiale, les approximants de Padé apparaissent comme les réduites de diverses fractions continues (généralisées) dont la limite est aussi la fonction initiale.
En mathématiques, le polygone de Newton est un polygone du plan euclidien que l'on peut associer à un polynôme, lorsque les coefficients de ce dernier sont éléments d'un corps valué. Le polygone de Newton encode un certain nombre d'informations à propos de la factorisation d'un polynôme, et la localisation de ses racines. Il est particulièrement utile lorsque les coefficients du polynôme sont éléments d'un corps local non archimédien, comme le corps des nombres p-adiques, ou celui des séries de Laurent sur un corps fini, mais il peut également être utilisé avec profit dans l'étude des polynômes à coefficients rationnels, ou des polynômes en plusieurs indéterminées.
En mathématiques, le « critère d'Eisenstein », publié auparavant par Theodor Schönemann, donne des conditions suffisantes pour qu'un polynôme à coefficients entiers soit irréductible sur le corps des nombres rationnels. Considérons un polynôme P(X) à coefficients entiers, que l'on note Supposons qu'il existe un nombre premier p tel que : p divise ; p ne divise pas a ; p ne divise pas a. Alors P(X) est irréductible dans l'anneau des polynômes à coefficients rationnels.
Explore des techniques d'intégration avancées telles que le changement de variable et l'intégration par parties pour simplifier les intégrales complexes et résoudre les problèmes d'intégration difficiles.
Explore l'analyse de l'équilibre dominant dans la résolution du polynôme quintique, révélant des aperçus sur le comportement de la racine et l'importance des expressions symboliques.
Many engineering fields rely on frequency-domain dynamical systems for the mathematical modeling of physical (electrical/mechanical/etc.) structures. With the growing need for more accurate and reliable results, the computational burden incurred by frequen ...
We consider the nonlinear Korteweg-de Vries (KdV) equation in a bounded interval equipped with the Dirichlet boundary condition and the Neumann boundary condition on the right. It is known that there is a set of critical lengths for which the solutions of ...
2020
,
We consider rank-1 lattices for integration and reconstruction of functions with series expansion supported on a finite index set. We explore the connection between the periodic Fourier space and the non-periodic cosine space and Chebyshev space, via tent ...