In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is .
The symmetric difference of the sets A and B is commonly denoted by or
The power set of any set becomes an abelian group under the operation of symmetric difference, with the empty set as the neutral element of the group and every element in this group being its own inverse. The power set of any set becomes a Boolean ring, with symmetric difference as the addition of the ring and intersection as the multiplication of the ring.
The symmetric difference is equivalent to the union of both relative complements, that is:
The symmetric difference can also be expressed using the XOR operation ⊕ on the predicates describing the two sets in set-builder notation:
The same fact can be stated as the indicator function (denoted here by ) of the symmetric difference, being the XOR (or addition mod 2) of the indicator functions of its two arguments: or using the Iverson bracket notation .
The symmetric difference can also be expressed as the union of the two sets, minus their intersection:
In particular, ; the equality in this non-strict inclusion occurs if and only if and are disjoint sets. Furthermore, denoting and , then and are always disjoint, so and partition . Consequently, assuming intersection and symmetric difference as primitive operations, the union of two sets can be well defined in terms of symmetric difference by the right-hand side of the equality
The symmetric difference is commutative and associative:
The empty set is neutral, and every set is its own inverse:
Thus, the power set of any set X becomes an abelian group under the symmetric difference operation. (More generally, any field of sets forms a group with the symmetric difference as operation.) A group in which every element is its own inverse (or, equivalently, in which every element has order 2) is sometimes called a Boolean group; the symmetric difference provides a prototypical example of such groups.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the σ-algebra) and the method that is used for measuring (the measure). One important example of a measure space is a probability space. A measurable space consists of the first two components without a specific measure.
In mathematics, a Boolean ring R is a ring for which x2 = x for all x in R, that is, a ring that consists only of idempotent elements. An example is the ring of integers modulo 2. Every Boolean ring gives rise to a Boolean algebra, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨, which would constitute a semiring). Conversely, every Boolean algebra gives rise to a Boolean ring.
In mathematics, the algebra of sets, not to be confused with the mathematical structure of an algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Covers set operations and their relations to propositional logic, including cardinality.
Covers set operations and their analogies to propositional logic connectives, including the cardinality of set union.
Covers logical expressions, sets, elements, and equivalence relations.
Modern manufacturing engineering is based on a ``design-through-analysis'' workflow. According to this paradigm, a prototype is first designed with Computer-aided-design (CAD) software and then finalized by simulating its physical behavior, which usually i ...
We consider two problems regarding arithmetic progressions in symmetric sets in the finite field (product space) model. First, we show that a symmetric set S subset of Z(q)(n) containing vertical bar S vertical bar = mu . q(n) elements must contain at leas ...
Logic synthesis is a key component of digital design and modern EDA tools; it is thus an essential instrument for the design of leading-edge chips and to push the limits of their performance. In the last decades, the electronic circuits community has evolv ...