In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration, or simulated using Monte Carlo Integration. Let f be a non-negative real-valued function on the interval [a, b], and let S be the region of the plane under the graph of the function f and above the interval [a, b]. See the figure on the top right. This region can be expressed in set-builder notation as We are interested in measuring the area of S. Once we have measured it, we will denote the area in the usual way by The basic idea of the Riemann integral is to use very simple approximations for the area of S. By taking better and better approximations, we can say that "in the limit" we get exactly the area of S under the curve. When f(x) can take negative values, the integral equals the signed area between the graph of f and the x-axis: that is, the area above the x-axis minus the area below the x-axis. A partition of an interval [a, b] is a finite sequence of numbers of the form Each [xi, xi + 1] is called a sub-interval of the partition. The mesh or norm of a partition is defined to be the length of the longest sub-interval, that is, A tagged partition P(x, t) of an interval [a, b] is a partition together with a choice of a sample point within each sub-interval: that is, numbers t0, ..., tn − 1 with ti ∈ [xi, xi + 1] for each i. The mesh of a tagged partition is the same as that of an ordinary partition. Suppose that two partitions P(x, t) and Q(y, s) are both partitions of the interval [a, b]. We say that Q(y, s) is a refinement of P(x, t) if for each integer i, with i ∈ [0, n], there exists an integer r(i) such that xi = yr(i) and such that ti = sj for some j with j ∈ [r(i), r(i + 1)].

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (31)
MATH-100(b): Advanced analysis I
Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
MATH-101(ol): Analyse I (online)
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-101(a): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Show more
Related publications (35)
Related concepts (28)
Lebesgue integration
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X-axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.
Mean value theorem
In mathematics, the mean value theorem (or Lagrange theorem) states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval starting from local hypotheses about derivatives at points of the interval.
Mathematical analysis
Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions. These theories are usually studied in the context of real and complex numbers and functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.