In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields.
The property, typically construed, states that given two positive numbers and , there is an integer such that . It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no infinitely large or infinitely small elements.
It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ On the Sphere and Cylinder.
The notion arose from the theory of magnitudes of Ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's axioms for geometry, and the theories of ordered groups, ordered fields, and local fields.
An algebraic structure in which any two non-zero elements are comparable, in the sense that neither of them is infinitesimal with respect to the other, is said to be Archimedean.
A structure which has a pair of non-zero elements, one of which is infinitesimal with respect to the other, is said to be non-Archimedean.
For example, a linearly ordered group that is Archimedean is an Archimedean group.
This can be made precise in various contexts with slightly different formulations.
For example, in the context of ordered fields, one has the axiom of Archimedes which formulates this property, where the field of real numbers is Archimedean, but that of rational functions in real coefficients is not.
The concept was named by Otto Stolz (in the 1880s) after the ancient Greek geometer and physicist Archimedes of Syracuse.
The Archimedean property appears in Book V of Euclid's Elements as Definition 4:
Magnitudes are said to have a ratio to one another which can, when multiplied, exceed one another.
Because Archimedes credited it to Eudoxus of Cnidus it is also known as the "Theorem of Eudoxus" or the Eudoxus axiom.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Covers the concepts of infimum and supremum of subsets in real numbers.
Covers inf/sup, integral part of real numbers, and density of rational numbers.
Introduces complex numbers and their forms, including Cartesian, polar, and exponential forms, and explains how to find the argument of a complex number.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
In abstract algebra, a partially ordered group is a group (G, +) equipped with a partial order "≤" that is translation-invariant; in other words, "≤" has the property that, for all a, b, and g in G, if a ≤ b then a + g ≤ b + g and g + a ≤ g + b. An element x of G is called positive if 0 ≤ x. The set of elements 0 ≤ x is often denoted with G+, and is called the positive cone of G. By translation invariance, we have a ≤ b if and only if 0 ≤ -a + b.
In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. Research on the Go endgame by John Horton Conway led to the original definition and construction of surreal numbers. Conway's construction was introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness.
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
Cambridge Univ Press2024
,
In this work, we use finite elements simulations to study the far field properties of two plasmonic structures, namely a dipole antenna and a cylinder dimer, connected to a pair of nanorods. We show that electrical, rather than near field, coupling between ...
It is proved that the continuous bounded cohomology of SL2(k) vanishes in all positive degrees whenever k is a non-Archimedean local field. This holds more generally for boundary-transitive groups of tree automorphisms and implies low degree vanishing for ...