Concept

Aleph number

Summary
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (). The cardinality of the natural numbers is (read aleph-nought or aleph-zero; the term aleph-null is also sometimes used), the next larger cardinality of a well-ordered set is aleph-one then and so on. Continuing in this manner, it is possible to define a cardinal number for every ordinal number as described below. The concept and notation are due to Georg Cantor, who defined the notion of cardinality and realized that infinite sets can have different cardinalities. The aleph numbers differ from the infinity () commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the extended real number line. (aleph-zero, also aleph-nought or aleph-null) is the cardinality of the set of all natural numbers, and is an infinite cardinal. The set of all finite ordinals, called or (where is the lowercase Greek letter omega), has cardinality . A set has cardinality if and only if it is countably infinite, that is, there is a bijection (one-to-one correspondence) between it and the natural numbers. Examples of such sets are the set of all integers, any infinite subset of the integers, such as the set of all square numbers or the set of all prime numbers, the set of all rational numbers, the set of all constructible numbers (in the geometric sense), the set of all algebraic numbers, the set of all computable numbers, the set of all computable functions, the set of all binary strings of finite length, and the set of all finite subsets of any given countably infinite set.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.