In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are
Every positive integer can be factored in a unique way as
where the different from one are square-free integers that are pairwise coprime.
This is called the square-free factorization of n.
To construct the square-free factorization, let
be the prime factorization of , where the are distinct prime numbers. Then the factors of the square-free factorization are defined as
An integer is square-free if and only if for all . An integer greater than one is the th power of another integer if and only if is a divisor of all such that
The use of the square-free factorization of integers is limited by the fact that its computation is as difficult as the computation of the prime factorization. More precisely every known algorithm for computing a square-free factorization computes also the prime factorization. This is a notable difference with the case of polynomials for which the same definitions can be given, but, in this case, the square-free factorization is not only easier to compute than the complete factorization, but it is the first step of all standard factorization algorithms.
The radical of an integer is its largest square-free factor, that is with notation of the preceding section. An integer is square-free if and only if it is equal to its radical.
Every positive integer can be represented in a unique way as the product of a powerful number (that is an integer such that is divisible by the square of every prime factor) and a square-free integer, which are coprime. In this factorization, the square-free factor is and the powerful number is
The square-free part of is which is the largest square-free divisor of that is coprime with .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named.
In mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem.
In mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet.
By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we in ...
In this paper we investigate pointed (q, g, n)-Boltzmann loop-decorated maps with loops traversing only inner triangular faces. Using peeling exploration Budd (2018) modified to this setting we show that its law in the non-generic critical phase can be cod ...
We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...