Summary
In mathematics, reduced homology is a minor modification made to homology theory in algebraic topology, motivated by the intuition that all of the homology groups of a single point should be equal to zero. This modification allows more concise statements to be made (as in Alexander duality) and eliminates many exceptional cases (as in the homology groups of spheres). If P is a single-point space, then with the usual definitions the integral homology group H0(P) is isomorphic to (an infinite cyclic group), while for i ≥ 1 we have Hi(P) = {0}. More generally if X is a simplicial complex or finite CW complex, then the group H0(X) is the free abelian group with the connected components of X as generators. The reduced homology should replace this group, of rank r say, by one of rank r − 1. Otherwise the homology groups should remain unchanged. An ad hoc way to do this is to think of a 0-th homology class not as a formal sum of connected components, but as such a formal sum where the coefficients add up to zero. In the usual definition of homology of a space X, we consider the chain complex and define the homology groups by . To define reduced homology, we start with the augmented chain complex where . Now we define the reduced homology groups by for positive n and . One can show that ; evidently for all positive n. Armed with this modified complex, the standard ways to obtain homology with coefficients by applying the tensor product, or reduced cohomology groups from the cochain complex made by using a Hom functor, can be applied.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MATH-323: Topology III - Homology
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-497: Homotopy theory
We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen
Show more
Related lectures (42)
EML Spaces and Cohomology
Covers spaces, homology, chain groups, and abelianization in CW complexes and maps.
Bar Construction: Homology Groups and Classifying Space
Covers the bar construction method, homology groups, classifying space, and the Hopf formula.
Homology of Riemann Surfaces
Explores the homology of Riemann surfaces, including singular homology and the standard n-simplex.
Show more
Related publications (22)

Cochains are all you need

In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
EPFL2024
Show more
Related people (1)
Related concepts (4)
Singular homology
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology).
Homology (mathematics)
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes.
CW complex
A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). The C stands for "closure-finite", and the W for "weak" topology.
Show more