In probability theory, the law (or formula) of total probability is a fundamental rule relating marginal probabilities to conditional probabilities. It expresses the total probability of an outcome which can be realized via several distinct events, hence the name.
The law of total probability is a theorem that states, in its discrete case, if is a finite or countably infinite partition of a sample space (in other words, a set of pairwise disjoint events whose union is the entire sample space) and each event is measurable, then for any event of the same sample space:
or, alternatively,
where, for any for which these terms are simply omitted from the summation, because is finite.
The summation can be interpreted as a weighted average, and consequently the marginal probability, , is sometimes called "average probability"; "overall probability" is sometimes used in less formal writings.
The law of total probability can also be stated for conditional probabilities:
Taking the as above, and assuming is an event independent of any of the :
The law of total probability extends to the case of conditioning on events generated by continuous random variables. Let be a probability space. Suppose is a random variable with distribution function , and an event on . Then the law of total probability states
If admits a density function , then the result is
Moreover, for the specific case where , where is a Borel set, then this yields
Suppose that two factories supply light bulbs to the market. Factory X's bulbs work for over 5000 hours in 99% of cases, whereas factory Y's bulbs work for over 5000 hours in 95% of cases. It is known that factory X supplies 60% of the total bulbs available and Y supplies 40% of the total bulbs available. What is the chance that a purchased bulb will work for longer than 5000 hours?
Applying the law of total probability, we have:
where
is the probability that the purchased bulb was manufactured by factory X;
is the probability that the purchased bulb was manufactured by factory Y;
is the probability that a bulb manufactured by X will work for over 5000 hours;
is the probability that a bulb manufactured by Y will work for over 5000 hours.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take "on average" over an arbitrarily large number of occurrences – given that a certain set of "conditions" is known to occur. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values.
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(AB) or occasionally P_B(A).
In probability theory, the law of total variance or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, states that if and are random variables on the same probability space, and the variance of is finite, then In language perhaps better known to statisticians than to probability theorists, the two terms are the "unexplained" and the "explained" components of the variance respectively (cf. fraction of variance unexplained, explained variation).
Explores probabilistic linear regression, covering joint and conditional probability, ridge regression, and overfitting mitigation.
Explores conditional probability and Bayes' theorem, demonstrating their application in real-life scenarios.
Covers the von Neumann Extractor, its extensions, extraction rules, uniformity proofs, and exchangeability of sequences.
Thin-laminate composites with thicknesses below 200 mu m hold significant promise for future, larger, and lighter deployable structures. This paper presents a study of the time-dependent failure behavior of thin carbon-fiber laminates under bending, focusi ...
We quantify the synchronization between snowfall and natural avalanches in relation to terrain properties at the detachment zone. We analyze field statistics of 549 avalanche events in terms of slope, aspect, timing, coordinate, and release area, identifie ...
Consider a finite set of sources, each producing independent identically distributed observations that follow a unique probability distribution on a finite alphabet. We study the problem of matching a finite set of observed sequences to the set of sources ...
Institute of Electrical and Electronics Engineers2015