En algèbre, l'anneau K[X] des polynômes à une indéterminée X et à coefficients dans un corps commutatif K, comme celui des nombres rationnels, réels ou complexes, dispose d'une division euclidienne, qui ressemble formellement à celle des nombres entiers. Si A et B sont deux polynômes de K[X], avec B non nul, il existe un unique couple (Q, R) de polynômes de K[X] tel que : Ici l'expression deg S, si S désigne un polynôme, signifie le degré de S. Cette division confère à l'ensemble des polynômes une arithmétique analogue à celle des nombres entiers, avec pour conséquence, l'identité de Bézout, le lemme d'Euclide ou encore un équivalent du théorème fondamental de l'arithmétique, où les nombres premiers sont remplacés par les polynômes unitaires irréductibles (cf. l'article « Arithmétique des polynômes »). Il existe une deuxième division, dite selon les puissances croissantes. Elle est utilisée pour les fractions rationnelles et permet une décomposition en éléments simples. En 1801, Carl Friedrich Gauss publie son premier livre de mathématiques, intitulé Disquisitiones arithmeticae. Il démontre en particulier l'existence d'une nouvelle figure constructible à la règle et au compas, le polygone régulier à 17 côtés. La méthode qu'il utilise consiste à considérer un polynôme, non comme une fonction mais comme élément d'une structure, que l'on appelle maintenant anneau, doté d'une addition et d'une multiplication. Les éléments ne sont pas tous inversibles, rapprochant en cela cette structure de celle des nombres entiers. Cette analogie est rendue plus profonde si les coefficients des polynômes sont choisis dans un corps, c'est-à-dire un anneau dans lequel tous les éléments différents de 0 possèdent un inverse. La structure dispose alors d'une division euclidienne à l'image de celle des entiers. Sur un anneau commutatif, c'est-à-dire dont la multiplication est commutative, disposant d'une division euclidienne, on retrouve les résultats principaux de l'arithmétique élémentaire.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-115(b): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Afficher plus
Séances de cours associées (88)
Valeurs propres et polynôme minimal
Explore les valeurs propres et le polynôme minimal, soulignant leur importance dans l'algèbre linéaire.
Polynômes et endomorphismes
Couvre les fondamentaux des polynômes, des endomorphismes, des divisions, des racines, des matrices et des homomorphismes algébriques.
Polynômes minimaux : Unicité et division
Explore l'unicité des polynômes minimaux et l'algorithme de division des polynômes.
Afficher plus
Publications associées (70)

Certification of Bottleneck Task Assignment With Shortest Path Criteria

Maryam Kamgarpour, Tony Alan Wood

Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment wi ...
2023

A PCP Theorem for Interactive Proofs and Applications

Alessandro Chiesa

The celebrated PCP Theorem states that any language in NP can be decided via a verifier that reads O(1) bits from a polynomially long proof. Interactive oracle proofs (IOP), a generalization of PCPs, allow the verifier to interact with the prover for multi ...
SPRINGER INTERNATIONAL PUBLISHING AG2022

Subspace clustering in high-dimensions: Phase transitions & Statistical-to-Computational gap

Florent Gérard Krzakala, Lenka Zdeborová, Luca Pesce, Bruno Loureiro

A simple model to study subspace clustering is the high-dimensional k -Gaussian mixture model where the cluster means are sparse vectors. Here we provide an exact asymptotic characterization of the statistically optimal reconstruction error in this model i ...
2022
Afficher plus
Concepts associés (16)
Algèbre
L'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Polynomial greatest common divisor
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant.
Polynôme formel
En algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.