Concept

Forme différentielle de degré un

En géométrie différentielle, les formes différentielles de degré un, ou 1-formes (différentielles), sont les exemples les plus simples de formes différentielles. Une 1-forme différentielle sur un ouvert d'un espace vectoriel normé est un champ de formes linéaires c'est-à-dire une application, qui, à chaque point de l'espace, fait correspondre une forme linéaire. Plus généralement, on peut définir de telles formes linéaires sur une variété différentielle. La définition d'une 1-forme est analogue à celle d'un champ de vecteurs ; ces deux notions sont d'ailleurs en dualité. Pour cette raison, les 1-formes différentielles sont parfois appelées des covecteurs ou champs de covecteurs, en particulier en physique. L'exemple le plus simple de 1-forme différentielle est la différentielle d'une fonction numérique f, qui se note df. Réciproquement, à partir d'une forme différentielle ω, on peut rechercher s'il existe une fonction primitive de ω, c'est-à-dire telle que ω = df. Une condition nécessaire pour l'existence d'une telle fonction f est que la forme différentielle soit fermée. Mais cette condition n'est généralement pas suffisante, et le défaut d'existence est relié à la topologie du domaine considéré. Il est mesuré par un élément de ce qui est appelé le premier groupe de cohomologie de De Rham. Par extension, il est possible de définir des 1-formes différentielles à valeurs dans des espaces vectoriels. Parmi les 1-formes différentielles remarquables, il faut citer les formes de contact et les connexions d'Ehresmann. Toutefois leurs définitions nécessitent une meilleure connaissance des formes différentielles et du calcul différentiel extérieur. Les notations différentielles sont couramment utilisées de façon informelle en sciences physiques, pour désigner l'accroissement très petit d'une variable. Pour une variable réelle, le mot « accroissement » est pris en un sens algébrique, c'est-à-dire qu'un accroissement peut être compté positivement ou négativement. Il est également possible de parler de l'accroissement infinitésimal d'un vecteur variable.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-322: Differential geometry II - smooth manifolds
Smooth manifolds constitute a certain class of topological spaces which locally look like some Euclidean space R^n and on which one can do calculus. We introduce the key concepts of this subject, such
MATH-115(a): Advanced linear algebra II - diagonalization
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
Afficher plus
Séances de cours associées (33)
Formes harmoniques : théorème principal
Explore les formes harmoniques sur les surfaces de Riemann et l'unicité des solutions aux équations harmoniques.
Fonctions Méromorphes & Différentiels
Explore les fonctions méromorphes, les pôles, les résidus, les ordres, les diviseurs et le théorème de Riemann-Roch.
Formes différentielles sur les collecteurs
Introduit des formes différentielles sur les collecteurs, couvrant les faisceaux tangents et les appariements d'intersection.
Afficher plus
Publications associées (25)

Cochains are all you need

In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
EPFL2024

Synthesis and Analysis of 3D shapes with Geometric Deep Learning in Computer-Aided Engineering

Edoardo Remelli

In this thesis, we advocate that Computer-Aided Engineering could benefit from a Geometric Deep Learning revolution, similarly to the way that Deep Learning revolutionized Computer Vision. To do so, we consider a variety of Computer-Aided Engineering pro ...
EPFL2022

Serre-Tate theory for Calabi-Yau varieties

Maciej Emilian Zdanowicz

Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
WALTER DE GRUYTER GMBH2021
Afficher plus
Concepts associés (16)
Variété différentielle
En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Fibré cotangent
En géométrie différentielle, le fibré cotangent associé à une variété différentielle M est le fibré vectoriel T*M de son fibré tangent TM : en tout point m de M, l' est défini comme l'espace dual de l'espace tangent : Les sections lisses du fibré cotangent sont les 1-formes différentielles, l'une d'entre elles étant remarquable et appelée 1-forme tautologique (ou 1-forme de Poincaré, ou 1-forme de Liouville, ou 1-forme canonique, ou potentiel symplectique). Sa dérivée extérieure donne une 2-forme symplectique canonique.
Dérivée extérieure
En mathématiques, la dérivée extérieure, opérateur de la topologie différentielle et de la géométrie différentielle, étend le concept de la différentielle d'une fonction aux formes différentielles de degré quelconque. Elle permet de définir les formes différentielles fermées et exactes. Elle est importante dans la théorie de l'intégration sur les variétés, et elle est la différentielle employée pour définir la cohomologie de De Rham et celle d'Alexander-Spanier. Sa forme actuelle fut inventée par Élie Cartan.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.