Summary
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide. A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group. The left R-module M is finitely generated if there exist a1, a2, ..., an in M such that for any x in M, there exist r1, r2, ..., rn in R with x = r1a1 + r2a2 + ... + rnan. The set {a1, a2, ..., an} is referred to as a generating set of M in this case. A finite generating set need not be a basis, since it need not be linearly independent over R. What is true is: M is finitely generated if and only if there is a surjective R-linear map: for some n (M is a quotient of a free module of finite rank). If a set S generates a module that is finitely generated, then there is a finite generating set that is included in S, since only finitely many elements in S are needed to express any finite generating set, and these finitely many elements form a generating set. However, it may occur that S does not contain any finite generating set of minimal cardinality. For example the set of the prime numbers is a generating set of viewed as -module, and a generating set formed from prime numbers has at least two elements, while the singleton is also a generating set. In the case where the module M is a vector space over a field R, and the generating set is linearly independent, n is well-defined and is referred to as the dimension of M (well-defined means that any linearly independent generating set has n elements: this is the dimension theorem for vector spaces).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood