scikit-learn (formerly scikits.learn and also known as sklearn) is a free software machine learning library for the Python programming language. It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy. Scikit-learn is a NumFOCUS fiscally sponsored project. The scikit-learn project started as scikits.learn, a Google Summer of Code project by French data scientist David Cournapeau. The name of the project stems from the notion that it is a "SciKit" (SciPy Toolkit), a separately developed and distributed third-party extension to SciPy. The original codebase was later rewritten by other developers. In 2010, contributors Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort and Vincent Michel, from the French Institute for Research in Computer Science and Automation in Saclay, France, took leadership of the project and released the first public version of the library on February 1, 2010. In November 2012, scikit-learn as well as , were described as two of the "well-maintained and popular" . In 2019, it was noted that scikit-learn is one of the most popular machine learning libraries on GitHub. scikit-learn is largely written in Python, and uses NumPy extensively for high-performance linear algebra and array operations. Furthermore, some core algorithms are written in Cython to improve performance. Support vector machines are implemented by a Cython wrapper around LIBSVM; logistic regression and linear support vector machines by a similar wrapper around LIBLINEAR. In such cases, extending these methods with Python may not be possible. scikit-learn integrates well with many other Python libraries, such as Matplotlib and plotly for plotting, NumPy for array vectorization, Pandas dataframes, SciPy, and many more. scikit-learn was initially developed by David Cournapeau as a Google Summer of Code project in 2007.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
CIVIL-226: Introduction to machine learning for engineers
Machine learning is a sub-field of Artificial Intelligence that allows computers to learn from data, identify patterns and make predictions. As a fundamental building block of the Computational Thinki
ENG-209: Data science for engineers with Python
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
Afficher plus
Séances de cours associées (32)
L'essentiel de la science des données : Python, Numpy, Pandas et Scikit-learn
Couvre l'essentiel de Data Science en utilisant Python, Numpy, Pandas et Scikit-learn, y compris l'analyse et la classification des séquences d'ADN.
Introduction générale à la science des données
Offre une introduction complète à la science des données, couvrant Python, Numpy, Pandas, Matplotlib et Scikit-learn, en mettant l'accent sur les exercices pratiques et le travail collaboratif.
Régression : Hautes Dimensions
Explore la régression linéaire en dimensions élevées et la prévision pratique des prix des maisons à partir d'un ensemble de données.
Afficher plus
Publications associées (27)
Concepts associés (12)
K-moyennes
Le partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Pandas
Pandas est une bibliothèque écrite pour le langage de programmation Python permettant la manipulation et l'analyse des données. Elle propose en particulier des structures de données et des opérations de manipulation de tableaux numériques et de séries temporelles. Pandas est un logiciel libre sous licence BSD. Son nom est dérivé du terme Panel Data (en français "données de panel", un terme d'économétrie pour les jeux de données qui comprennent des observations sur plusieurs périodes de temps pour les mêmes individus).
TensorFlow
TensorFlow est un outil open source d'apprentissage automatique développé par Google. Le code source a été ouvert le par Google et publié sous licence Apache. Il est fondé sur l'infrastructure DistBelief, initiée par Google en 2011, et est doté d'une interface pour Python, Julia et R TensorFlow est l'un des outils les plus utilisés en IA dans le domaine de l'apprentissage machine. À partir de 2011, Google Brain a développé un outil propriétaire d'apprentissage automatique fondé sur l'apprentissage profond.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.