In theoretical physics, topological string theory is a version of string theory. Topological string theory appeared in papers by theoretical physicists, such as Edward Witten and Cumrun Vafa, by analogy with Witten's earlier idea of topological quantum field theory.
There are two main versions of topological string theory: the topological A-model and the topological B-model. The results of the calculations in topological string theory generically encode all holomorphic quantities within the full string theory whose values are protected by spacetime supersymmetry. Various calculations in topological string theory are closely related to Chern–Simons theory, Gromov–Witten invariants, mirror symmetry, geometric Langlands Program, and many other topics.
The operators in topological string theory represent the algebra of operators in the full string theory that preserve a certain amount of supersymmetry. Topological string theory is obtained by a topological twist of the worldsheet description of ordinary string theory: the operators are given different spins. The operation is fully analogous to the construction of topological field theory which is a related concept. Consequently, there are no local degrees of freedom in topological string theory.
The fundamental strings of string theory are two-dimensional surfaces. A quantum field theory known as the N = (1,1) sigma model is defined on each surface. This theory consist of maps from the surface to a supermanifold. Physically the supermanifold is interpreted as spacetime and each map is interpreted as the embedding of the string in spacetime.
Only special spacetimes admit topological strings. Classically, one must choose a spacetime such that the theory respects an additional pair of supersymmetries, making the spacetime an N = (2,2) sigma model. A particular case of this is if the spacetime is a Kähler manifold and the H-flux is identically equal to zero. Generalized Kähler manifolds can have a nontrivial H-flux.
Ordinary strings on special backgrounds are never topological.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.
In physics, a topological quantum number (also called topological charge) is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or soliton-type solutions of some set of differential equations modeling a physical system, as the solitons themselves owe their stability to topological considerations.
Nigel James Hitchin FRS (born 2 August 1946) is a British mathematician working in the fields of differential geometry, gauge theory, algebraic geometry, and mathematical physics. He is a Professor Emeritus of Mathematics at the University of Oxford. Hitchin attended Ecclesbourne School, Duffield, and earned his BA in mathematics from Jesus College, Oxford, in 1968. After moving to Wolfson College, he received his D.Phil. in 1972. From 1971 to 1973 he visited the Institute for Advanced Study and 1973/74 the Courant Institute of Mathematical Sciences of New York University.
Nonreciprocal topological edge states based on external magnetic bias have been regarded as the last resort for genuine unidirectional wave transport, showing superior robustness over topological states with preserved time-reversal symmetry. However, fast ...
2024
This Ph.D. thesis unveils the unique topological phenomena occurring in such networks, focusing on the intricate interplay between their Floquet topology, the presence of disorder, and their unitary scattering at microscopic and macroscopic scales. Using t ...
EPFL2024
,
Parametric oscillators are examples of externally driven systems that can exhibit two stable states with opposite phase depending on the initial conditions. In this work, we propose to study what happens when the external forcing is perturbed by a continuo ...