L'analyse canonique des corrélations, parfois aussi nommé analyse des corrélations canoniques, (canonical-correlation analysis en anglais) permet de comparer deux groupes de variables quantitatives appliqués tous deux sur les mêmes individus. Le but de l'analyse canonique est de comparer ces deux groupes de variables pour savoir s'ils décrivent un même phénomène, auquel cas on pourra se passer d'un des deux groupes de variables. Un exemple parlant est celui des analyses médicales effectuées sur les mêmes échantillons par deux laboratoires différents. L'analyse canonique généralise des méthodes aussi diverses que la régression linéaire multiple, l'analyse discriminante et l'analyse factorielle des correspondances. thumb|right| Analyse Canonique des Correlations : matrices des corrélations sur les données nutrimouse du package CCA de R d'après l'article d'Ignacio et al. dans Soient deux vecteurs colonnes X et Y de dimensions respectives n et m : et de variables aléatoires ayant un moment d'ordre deux fini. On peut définir la covariance croisée comme la matrice de taille n × m dont l'élément (i,j) est la covariance de xi et yj. En pratique, cette covariance est souvent estimée à partir d'un échantillon de X et Y, c'est-à-dire d'après deux matrices dont chaque colonne est une réalisation de X et Y. L'analyse canonique des corrélations recherche deux vecteurs a et b de dimensions respectives n et m qui maximisent la corrélation entre les produits scalaires (a·X) et (b·Y). En d'autres termes : Les variables aléatoires U = a·X et V = b·Y sont la première paire de variables canoniques. On peut alors répéter la procédure pour obtenir une seconde paire de variables non corrélée à la première.thumb|left|Analyse Canonique des Correlations : représentation des variables et des individus dans le plan des deux premières variables canoniques sur les données nutrimouse du package CCA de R d'après l'article d'Ignacio et al. dans Analyse canonique généralisée Analyse canonique à noyaux Analyse des données Exploration de données Fa

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (8)
BIO-369: Randomness and information in biological data
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
Afficher plus
Séances de cours associées (32)
Réduction dimensionnelle
Explore la décomposition de la valeur singulière et l'analyse des composantes principales pour la réduction de la dimensionnalité, avec des applications de visualisation et d'efficacité.
Modèles linéaires: Ridge, OLS et LASSO
Couvre des modèles linéaires comme Ridge, OLS et LASSO, expliquant les valeurs singulières et l'analyse de régression.
Clustering de données efficace
Couvre l'exploitation efficace des données grâce à des méthodes de clustering et à l'optimisation des rendements du marché à l'aide du clustering d'actifs.
Afficher plus
Publications associées (52)
Concepts associés (5)
Réduction de la dimensionnalité
vignette|320x320px|Animation présentant la projection de points en deux dimensions sur les axes obtenus par analyse en composantes principales, une méthode populaire de réduction de la dimensionnalité La réduction de la dimensionnalité (ou réduction de (la) dimension) est un processus étudié en mathématiques et en informatique, qui consiste à prendre des données dans un espace de grande dimension, et à les remplacer par des données dans un espace de plus petite dimension.
Valeur propre, vecteur propre et espace propre
En mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Analyse en composantes principales
L'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.